<param name="Angle_gain_d" value="-3.0"/>
时间: 2023-07-06 14:32:29 浏览: 87
这也是一个ROS的launch文件中的一个参数设置,具体包括:
1. name:"Angle_gain_d"表示小车转向控制的微分系数。
2. value:设置小车转向控制的微分系数,这里为-3.0。
该参数用于控制小车转向控制的微分关系,一般是指小车根据当前偏差角度与期望偏差角度之间的变化率,按照一定的比例来控制小车转向舵机的转动。这里的-3.0表示小车转向控制的微分系数为负数,即小车在偏差角度与期望偏差角度之间的变化率越大,小车转向舵机的转动角度就越大,以实现更快的转向响应速度。在实际应用中,需要根据小车的转向机构、转向控制算法以及场景需求等因素进行考虑,以实现小车的高效、稳定、精确的转向控制。
相关问题
<param name="Angle_gain_p" value="-3.0"/>
这也是一个ROS的launch文件中的一个参数设置,具体包括:
1. name:"Angle_gain_p"表示小车转向控制的比例系数。
2. value:设置小车转向控制的比例系数,这里为-3.0。
该参数用于控制小车转向控制的比例关系,一般是指小车根据当前偏差角度与期望偏差角度之间的差距,按照一定的比例来控制小车转向舵机的转动。这里的-3.0表示小车转向控制的比例系数为负数,即小车在偏差角度与期望偏差角度之间的差距越大,小车转向舵机的转动角度就越大,以实现更快的转向效果。在实际应用中,需要根据小车的转向机构、转向控制算法以及场景需求等因素进行考虑,以实现小车的高效、稳定、精确的转向控制。
<xacro:macro name="Livox_Mid_gazebo_sensor" params="visualize:=True update_rate:=10 resolution:=0.002 noise_mean:=0.0 noise_stddev:=0.01 name:=livox"> <gazebo reference="${name}"> <sensor type="ray" name="laser_${name}"> <pose>0 0 0 0 0 0</pose> <visualize>${visualize}</visualize> <update_rate>${update_rate}</update_rate> <!-- This ray plgin is only for visualization. --> <plugin name="gazebo_ros_laser_controller" filename="liblivox_laser_simulation.so"> <ray> <scan> <horizontal> <samples>100</samples> <resolution>1</resolution> <min_angle>${0}</min_angle> <max_angle>${2M_PI}</max_angle> </horizontal> <vertical> <samples>360</samples> <resolution>1</resolution> <min_angle>${-7.22/180M_PI}</min_angle> <max_angle>${55.22/180*M_PI}</max_angle> </vertical> </scan> <range> <min>${laser_min_range}</min> <max>${laser_max_range}</max> <resolution>${resolution}</resolution> </range> <noise> <type>gaussian</type> <mean>${noise_mean}</mean> <stddev>${noise_stddev}</stddev> </noise> </ray> <visualize>${visualize}</visualize> <samples>${samples}</samples> <downsample>${downsample}</downsample> <csv_file_name>/home/kuper/PX4_Firmware/Tools/sitl_gazebo/models/livox/scan_mode/mid360.csv</csv_file_name> <ros_topic>${ros_topic}</ros_topic> </plugin> </sensor> </gazebo> </xacro:macro>转为sdf格式
您可以使用xacro命令将该xacro宏转换为sdf格式,具体操作如下:
1. 创建一个包含xacro文件的包,并在该包中创建一个launch文件,用于将xacro转换为sdf格式。假设该包名为"livox_description",该xacro文件名为"livox_mid_gazebo_sensor.xacro",则可以在该包中创建一个名为"convert_xacro_to_sdf.launch"的文件,内容如下:
```
<launch>
<arg name="model_name" default="livox" />
<arg name="xacro_file" default="$(find livox_description)/urdf/livox_mid_gazebo_sensor.xacro" />
<arg name="sdf_file" default="$(find livox_description)/urdf/livox_mid_gazebo_sensor.sdf" />
<xacro:macro name="livox_mid_gazebo_sensor" params="visualize:=True update_rate:=10 resolution:=0.002 noise_mean:=0.0 noise_stddev:=0.01 name:=livox">
<!-- xacro代码 -->
</xacro:macro>
<node name="xacro" pkg="xacro" type="xacro" args="$(arg xacro_file)">
<param name="visualize" value="$(arg visualize)" />
<param name="update_rate" value="$(arg update_rate)" />
<param name="resolution" value="$(arg resolution)" />
<param name="noise_mean" value="$(arg noise_mean)" />
<param name="noise_stddev" value="$(arg noise_stddev)" />
<param name="name" value="$(arg model_name)" />
<param name="laser_min_range" value="0.1" />
<param name="laser_max_range" value="100.0" />
<param name="samples" value="1000" />
<param name="downsample" value="1" />
<param name="ros_topic" value="/livox/point_cloud" />
<param name="ros_node_name" value="livox_mid_gazebo_sensor" />
<param name="csv_file_name" value="$(find livox_description)/models/livox/scan_mode/mid360.csv" />
</node>
<node name="sdf" pkg="gazebo_ros" type="spawn_model" args="-sdf -file $(arg sdf_file) -model $(arg model_name)" />
</launch>
```
2. 运行launch文件,使用gazebo的spawn_model命令将sdf模型加载到仿真环境中。您可以在终端中运行以下命令:
```
roslaunch livox_description convert_xacro_to_sdf.launch
```
注意:需要将xacro代码中的参数值替换为实际的值。另外,如果xacro文件中使用了其他的xacro文件或包含其他的宏定义,则需要在launch文件中添加相应的参数和节点。
阅读全文