def forward(self, inputs): # 对模型输入拆分为序列数据和mask input_ids, sequence_length = inputs # 获取词向量 inputs_emb = self.embedding(input_ids) # 使用lstm处理数据 sequence_output, _ = self.rnn(inputs_emb, sequence_length=sequence_length) # 使用聚合层聚合sequence_output batch_mean_hidden = self.average_layer(sequence_output, sequence_length) # 输出文本分类output output = self.output(batch_mean_hidden) return output
时间: 2024-01-19 13:03:01 浏览: 171
这段代码看起来像是一个文本分类的模型的前向传播函数,它接受输入的序列数据和mask,并进行了以下几个步骤:
1. 使用embedding层将输入的序列数据转换为词向量。
2. 使用LSTM对词向量进行处理,得到输出的序列数据。
3. 使用聚合层对输出的序列数据进行聚合,得到一个batch的平均隐藏状态。
4. 使用输出层对平均隐藏状态进行分类,得到最终的输出。
这个模型的具体实现细节可能还需要看其他部分的代码才能确定,但是总体来说,这段代码是一个基础的文本分类模型的前向传播函数。
相关问题
def forward(self, input_data, attention_mask=None, labels=None, position_ids=None, inputs_embeds=None, head_mask=None): outputs = self.bert(input_data, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds) sequence_output = outputs[0] # 去除cls,(batch,seq) sequence_output = sequence_output[:, 1:] sequence_output = self.dropout(sequence_output) # 得到判别值 logits = self.classifier(sequence_output) outputs = (logits,) if labels is not None: loss_mask = labels.gt(-1) loss = self.crf(logits, labels, loss_mask) * (-1) outputs = (loss,) + outputs # contain: (loss), scores return outputs
这是BertNER模型的前向传播函数,输入参数包括input_data,attention_mask,labels,position_ids,inputs_embeds,head_mask。其中,input_data是输入的文本数据,attention_mask是掩码,用于指示哪些词是padding,labels是标注序列,position_ids是位置编码,inputs_embeds是词嵌入向量,head_mask是多头注意力层的掩码。
在函数中,首先将输入数据input_data输入到BERT模型中,得到输出outputs,其中outputs[0]表示BERT模型的输出特征。接着,去掉输出特征中的[CLS]标记,并通过dropout层进行随机失活。然后,将输出特征输入到线性分类器中,得到每个位置上的标记得分,即预测值。如果labels不为空,则计算损失值,并将损失值添加到输出outputs中。最后,返回输出outputs。
import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import bert import numpy as np from transformers import BertTokenizer, BertModel # 设置BERT模型的路径和参数 bert_path = "E:\\AAA\\523\\BERT-pytorch-master\\bert1.ckpt" max_seq_length = 128 train_batch_size = 32 learning_rate = 2e-5 num_train_epochs = 3 # 加载BERT模型 def create_model(): input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer(bert_path, trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) output = layers.Dense(1, activation='sigmoid')(pooled_output) model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=output) return model # 准备数据 def create_input_data(sentences, labels): tokenizer = bert.tokenization.FullTokenizer(vocab_file=bert_path + "trainer/vocab.small", do_lower_case=True) # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') input_ids = [] input_masks = [] segment_ids = [] for sentence in sentences: tokens = tokenizer.tokenize(sentence) tokens = ["[CLS]"] + tokens + ["[SEP]"] input_id = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_id) segment_id = [0] * len(input_id) padding_length = max_seq_length - len(input_id) input_id += [0] * padding_length input_mask += [0] * padding_length segment_id += [0] * padding_length input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) return np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels) # 加载训练数据 train_sentences = ["Example sentence 1", "Example sentence 2", ...] train_labels = [0, 1, ...] train_input_ids, train_input_masks, train_segment_ids, train_labels = create_input_data(train_sentences, train_labels) # 构建模型 model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss='binary_crossentropy', metrics=['accuracy']) # 开始微调 model.fit([train_input_ids, train_input_masks, train_segment_ids], train_labels, batch_size=train_batch_size, epochs=num_train_epochs)
这段代码是用 TensorFlow 和 BERT 模型进行文本分类的示例。首先定义了模型路径和参数,然后使用 `hub.KerasLayer` 加载 BERT 模型,对输入进行编码后,添加一个全连接层并进行二分类,构建一个分类模型。接着使用 `bert.tokenization.FullTokenizer` 对输入数据进行编码,最后使用 `model.fit` 进行微调训练。这个示例并不是完整的代码,需要根据实际情况进行修改。
阅读全文