凸多边形最优三角剖分python代码和伪代码
时间: 2023-07-02 14:20:19 浏览: 130
凸多边形最优三角剖分(C语言编写) 算法
4星 · 用户满意度95%
以下是凸多边形最优三角剖分的 Python 代码和伪代码:
Python 代码:
```python
import math
# 计算三角形面积
def triangle_area(p1, p2, p3):
return abs(0.5 * ((p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])))
# 计算最优三角剖分
def optimal_triangulation(points):
n = len(points)
dp = [[0 for j in range(n)] for i in range(n)]
for i in range(n - 2, -1, -1):
for j in range(i + 2, n):
dp[i][j] = math.inf
for k in range(i + 1, j):
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + triangle_area(points[i], points[j], points[k]))
return dp[0][n - 1]
# 测试
points = [(0, 0), (1, 0), (2, 1), (1, 2), (0, 2)]
print(optimal_triangulation(points))
```
伪代码:
```
function triangle_area(p1, p2, p3):
return abs(0.5 * ((p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])))
function optimal_triangulation(points):
n = length(points)
dp = array(n, n)
for i = n - 2 to 0 step -1:
for j = i + 2 to n - 1:
dp[i][j] = infinity
for k = i + 1 to j - 1:
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + triangle_area(points[i], points[j], points[k]))
return dp[0][n - 1]
# 测试
points = [(0, 0), (1, 0), (2, 1), (1, 2), (0, 2)]
print(optimal_triangulation(points))
```
阅读全文