如何将torch.randn(3)转换成1行3列的向量
时间: 2023-06-26 11:08:32 浏览: 93
可以使用torch.reshape()函数将torch.randn(3)转换成1行3列的向量。示例如下:
```
import torch
x = torch.randn(3)
print(x)
# 将x转换成1行3列的向量
x = torch.reshape(x, (1, 3))
print(x)
```
输出结果为:
```
tensor([-0.2717, 0.3071, -0.3091])
tensor([[-0.2717, 0.3071, -0.3091]])
```
相关问题
解释下面代码num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = nn.Parameter(torch.randn( num_inputs, num_hiddens, requires_grad=True) * 0.01) b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True)) W2 = nn.Parameter(torch.randn( num_hiddens, num_outputs, requires_grad=True) * 0.01) b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True)) params = [W1, b1, W2, b2]
这段代码定义了一个两层的全连接神经网络,其中:
- `num_inputs` 是输入层的输入维度,这里是 784,因为输入的数据是 MNIST 手写数字图像,每幅图像都是 $28 \times 28$ 的,展开后就是一个 $784$ 维的向量。
- `num_outputs` 是输出层的输出维度,这里是 10,因为要对手写数字进行分类,一共有 10 类。
- `num_hiddens` 是隐藏层的神经元个数,这里是 256,这个值是可以调整的,它决定了网络的复杂度和表达能力。
- `W1` 是输入层到隐藏层的权重矩阵,大小为 `(num_inputs, num_hiddens)`,是一个随机初始化的参数,`requires_grad=True` 表示这个参数需要计算梯度。
- `b1` 是输入层到隐藏层的偏置向量,大小为 `(num_hiddens,)`,初始值为 0,也需要计算梯度。
- `W2` 是隐藏层到输出层的权重矩阵,大小为 `(num_hiddens, num_outputs)`,也是随机初始化的参数,`requires_grad=True` 表示需要计算梯度。
- `b2` 是隐藏层到输出层的偏置向量,大小为 `(num_outputs,)`,初始值为 0,也需要计算梯度。
- `params` 是一个列表,包含了所有的参数(权重和偏置),是为了方便进行梯度更新和保存模型。
在这段代码中,使用了 PyTorch 的 `nn.Parameter` 类将权重矩阵和偏置向量转换成了可训练的参数。这样做的好处是,PyTorch 会自动地为这些参数计算梯度,我们只需要在反向传播时调用 `backward()` 方法就可以了。
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt # 定义RBF神经网络的类 class RBFNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RBFNetwork, self).__init__() # 初始化输入层,隐含层,输出层的节点数 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵和偏置向量 self.W1 = nn.Parameter(torch.randn(input_size, hidden_size)) # 输入层到隐含层的权重矩阵 self.b1 = nn.Parameter(torch.randn(hidden_size)) # 隐含层的偏置向量 self.W2 = nn.Parameter(torch.randn(hidden_size, output_size)) # 隐含层到输出层的权重矩阵 self.b2 = nn.Parameter(torch.randn(output_size)) # 输出层的偏置向量 def forward(self,x): # 前向传播过程 x = torch.from_numpy(x).float() # 将输入向量转换为张量 x = x.view(-1, self.input_size) # 调整输入向量的形状,使其与权重矩阵相匹配 h = torch.exp(-torch.cdist(x, self.W1.t()) + self.b1) # 计算隐含层的输出值,使用高斯径向基函数作为激活函数 y = F.linear(h, self.W2.t(), self.b2) # 计算输出层的输出值,使用线性函数作为激活函数 return y #定义pid控制器 class Pid(): def __init__(self, exp_val, kp, ki, kd): self.KP = kp self.KI = ki self.KD = kd self.exp_val = exp_val self.now_val = 0 self.sum_err = 0 self.now_err = 0 self.last_err = 0 def cmd_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.now_val def err_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.p_err = self.exp_val - self.now_val self.i_err = self.sum_err self.d_err = self.now_err - self.last_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.p_err, self.i_err, self.d_err rbf_net = RBFNetwork(3,10,4) pid_val = [] #对pid进行初始化,目标值是1000 ,p=0.1 ,i=0.15, d=0.1 A_Pid = Pid(1000, 0.1, 0.1, 0.1) # 然后循环100次把数存进数组中去 for i in range(0, 100): input_vector = np.array(A_Pid.err_pid()) output_vector = rbf_net(input_vector) output_vector = output_vector.reshape(4,1) A_Pid = Pid(1000, output_vector[0], output_vector[1], output_vector[2]) pid_val.append(A_Pid.cmd_pid())
这段代码看起来是一个使用 RBF 神经网络实现 PID 控制的例子。其中,RBF 神经网络的参数由 `RBFNetwork` 类来定义,PID 控制器由 `Pid` 类来定义。在主函数中,先对 PID 控制器进行初始化,然后循环 100 次,每次将 PID 控制器的误差作为 RBF 神经网络的输入,得到输出后再输入回 PID 控制器中更新控制量,并将控制量存入 `pid_val` 数组中。最终 `pid_val` 数组中存储的就是经过 RBF 神经网络控制后的输出。
阅读全文