y_fit = A * beta; % 计算拟合响应

时间: 2024-01-24 08:18:30 浏览: 11
这行代码中,y_fit 表示拟合响应,A 表示设计矩阵,beta 表示待求参数向量。这行代码的作用是利用设计矩阵和待求参数向量计算出拟合响应。具体来说,设计矩阵 A 中的每一行代表一个样本的特征,待求参数向量 beta 中的每个元素代表相应特征的权重。通过矩阵乘法,可以将每个样本的特征与相应的权重相乘并相加,得到该样本的拟合响应。整个拟合过程就是通过找到最优的待求参数向量,使得拟合响应与实际响应之间的误差最小化。
相关问题

对以下代码生成的图进行详细解释。% 假设有 n 个数据点,每个数据点有 m 个测量值 n = 100; % 数据点数 m = 3; % 测量值数 % 生成随机数据 x = rand(n, m); % 自变量数据 y = rand(n, 1); % 因变量数据 w = rand(n, 1); % 权重数据 % 计算加权最小二乘解 A = [x, ones(n, 1)]; % 构造设计矩阵 W = diag(w); % 构造权重矩阵 b = W * y; % 构造加权响应矩阵 C = A' * W * A; % 构造加权协方差矩阵 d = A' * W * b; % 构造加权设计响应矩阵 beta = C \ d; % 计算加权最小二乘解 % 计算测量残差 y_fit = A * beta; % 计算拟合响应 e = y - y_fit; % 计算测量残差 % 画图 figure; scatter(y_fit, e, [], w, 'filled'); xlabel('拟合响应'); ylabel('测量残差'); title('加权最小二乘拟合残差图'); colorbar;

这段代码的作用是进行加权最小二乘拟合,并绘制拟合残差图。 首先,定义了两个变量n和m,分别表示数据点的数量和测量值的数量。 接下来,使用rand函数生成了三个随机数据矩阵:x、y和w。其中,x是自变量数据矩阵,维度为n×m;y是因变量数据矩阵,维度为n×1;w是权重数据矩阵,维度为n×1。 然后,构造了设计矩阵A,将自变量数据x和全1列组合在一起;构造了权重矩阵W,使用diag函数将权重数据w转换为对角矩阵;构造了加权响应矩阵b,将因变量数据y与权重矩阵W相乘;构造了加权协方差矩阵C,计算A的转置与W和A的乘积;构造了加权设计响应矩阵d,计算A的转置与W和b的乘积。最后,通过C \ d计算出加权最小二乘解beta。 接着,根据拟合响应的计算公式y_fit = A * beta,计算出拟合响应y_fit。然后,通过计算测量残差e = y - y_fit得到测量残差。 最后,绘制了一个散点图,横轴为拟合响应y_fit,纵轴为测量残差e,点的大小和颜色根据权重数据w来表示。图的标题为"加权最小二乘拟合残差图",并添加了一个颜色条(colorbar)来表示权重值的范围。

n = 10000000 p = 10 x = np.random.normal(size=(n, p)) beta = np.arange(1, p+1).reshape(-1, 1) z = x @ beta condprob = norm.cdf(z) y = binom.rvs(1, condprob, size=n).reshape(-1, 1) prob_fit = glm(y, x, family=families.Binomial(link=families.links.probit)).fit() logit_fit = glm(y, x, family=families.Binomial(link=families.links.logit)).fit() linear_fit = glm(y, x, family=families.Gaussian(link=families.links.identity)).fit() coef_mat = np.column_stack((prob_fit.params, logit_fit.params, linear_fit.params)) print(coef_mat) prop_mat = np.column_stack((prob_fit.params / logit_fit.params, prob_fit.params / linear_fit.params, logit_fit.params / linear_fit.params))

这是一个用于生成数据并进行二项式回归、logistic回归和线性回归的Python代码。其中,n为样本量,p为自变量个数,x是从正态分布中随机生成的样本数据,beta是一个1到p的向量,z是x和beta的点积,condprob是z的累积分布函数值,y是从二项分布中生成的响应变量。 接下来,使用三种不同的link函数,分别对y和x进行回归拟合,并输出各个系数的值。最后,将三个模型的系数进行比较得到prop_mat。 这段代码的作用是演示了如何使用Python中的statsmodels库进行回归分析,并比较不同link函数的效果。由于生成的数据是随机的,因此每次运行结果可能会不同。

相关推荐

在运行以下R代码时:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %*% beta1 + rnorm(n) y2 <- X %*% beta2 + rnorm(n) y3 <- X %*% beta3 + rnorm(n) # 设置交叉验证折数 k <- 10 # 设置不同的lambda值 lambda_seq <- 10^seq(10, -2, length.out = 100) # 执行交叉验证和岭回归,并记录CV error和Prediction error cv_error <- list() pred_error <- list() for (i in 1:3) { # 交叉验证 cvfit <- cv.glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq, nfolds = k) cv_error[[i]] <- cvfit$cvm # 岭回归 fit <- glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq) pred_error[[i]] <- apply(X, 2, function(x) { x_mat <- matrix(x, nrow = n, ncol = p, byrow = TRUE) pred <- predict(fit, newx = x_mat) pred <- t(pred) mean((x_mat %*% fit$beta - switch(i, y1, y2, y3))^2) }) } # 绘制图形 par(mfrow = c(3, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) for (i in 1:3) { # CV error plot cv_plot_data <- cv_error[[i]] plot(log10(lambda_seq), cv_plot_data, type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i)) abline(v = log10(cvfit$lambda.min), col = "red") # Prediction error plot pred_plot_data <- pred_error[[i]] plot(log10(lambda_seq), pred_plot_data, type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i)) abline(v = log10(lambda_seq[which.min(pred_plot_data)]), col = "red") }。发生了以下问题:Error in xy.coords(x, y, xlabel, ylabel, log) : 'x'和'y'的长度不一样。请对原代码进行修正

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx
recommend-type

实验二 预习报告.docx

实验二 预习报告.docx
recommend-type

20240702作业1

20240702作业1
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。