simiab = np.sum(a * b) / (np.linalg.norm(a) * np.linalg.norm(b)) simiab2 = np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) 两者的区别?
时间: 2024-06-15 19:07:18 浏览: 132
Python--线性代数.TXT
simiab和simiab2都是计算向量a和向量b之间的相似度的公式,它们的区别在于计算相似度的方式不同。
simiab使用的是点积(dot product)的方式计算相似度。点积是将两个向量对应位置的元素相乘,并将结果相加得到的标量值。然后再除以两个向量的范数(即向量的模长)的乘积。这种方式可以衡量两个向量之间的夹角,夹角越小表示两个向量越相似。
simiab2使用的是向量乘法的方式计算相似度。向量乘法是将两个向量对应位置的元素相乘,并将结果相加得到的标量值。然后再除以两个向量的范数(即向量的模长)的乘积。这种方式也可以衡量两个向量之间的夹角,夹角越小表示两个向量越相似。
综上所述,simiab和simiab2在计算相似度时使用了不同的方式,但都可以用来衡量两个向量之间的相似程度。
阅读全文