算法设计-分支界限法--装载问题
时间: 2023-12-13 10:32:28 浏览: 121
利用分支界限法解决装载问题
5星 · 资源好评率100%
装载问题是指在给定的一批集装箱中选取若干个装上一艘载重量为C的轮船,如何才能使装上的集装箱重量最大。这是一个NP完全问题,可以使用分支限界法来解决。
分支限界法是一种用于求解最优化问题的通用算法。它通过将问题的解空间划分为若干个子集,每个子集对应一个可行解,然后通过限制条件和目标函数来剪枝,从而逐步缩小搜索空间,最终找到最优解。
下面是使用队列式分支限界法求解装载问题的Python代码:
```python
import queue
class Node:
def __init__(self, level, weight, value, bound):
self.level = level
self.weight = weight
self.value = value
self.bound = bound
def bound(node, n, c, w, v):
if node.weight >= c:
return 0
else:
bound = node.value
j = node.level + 1
totweight = node.weight
while j < n and totweight + w[j] <= c:
totweight += w[j]
bound += v[j]
j += 1
if j < n:
bound += (c - totweight) * v[j] / w[j]
return bound
def knapsack(n, c, w, v):
q = queue.Queue()
u = Node(-1, 0, 0, 0)
v = Node(-1, 0, 0, bound(u, n, c, w, v))
maxvalue = 0
q.put(v)
while not q.empty():
u = q.get()
if u.bound > maxvalue:
i = u.level + 1
u1 = Node(i, u.weight + w[i], u.value + v[i], 0)
if u1.weight <= c and u1.value > maxvalue:
maxvalue = u1.value
u1.bound = bound(u1, n, c, w, v)
if u1.bound > maxvalue:
q.put(u1)
u2 = Node(i, u.weight, u.value, 0)
u2.bound = bound(u2, n, c, w, v)
if u2.bound > maxvalue:
q.put(u2)
return maxvalue
w = [90, 80, 40, 30, 20, 12, 10]
v = [90, 80, 40, 30, 20, 12, 10]
c = 152
n = len(w)
print("最大装载重量为:", knapsack(n, c, w, v))
```
阅读全文