优先队列分支界限 装载问题 python
时间: 2023-11-15 18:02:33 浏览: 120
优先队列分支界限是一种解决问题的算法,它结合了优先队列和分支界限的思想。在解决装载问题时,我们可以使用优先队列分支界限算法来寻找最优解。装载问题是指有一批货物需要装载到若干个集装箱中,每个集装箱有一定的容量限制,要求在不超过容量限制的情况下,尽可能地装载更多的货物。这个问题可以使用优先队列分支界限算法来解决。在这个算法中,我们使用一个优先队列来存储所有的可行解,并按照优先级从高到低进行排序。每次从队列中取出优先级最高的解进行扩展,直到找到最优解为止。在扩展解的过程中,我们使用分支界限的思想来剪枝,以减少搜索空间,提高算法效率。Python是一种非常适合实现优先队列分支界限算法的编程语言,因为它具有简洁、易读、易写的特点,同时也有很多优秀的第三方库可以使用。
相关问题
python队列分支限界装载问题
以下是Python队列分支限界装载问题的解决方案:
```python
import queue
class Node:
def __init__(self, level, weight, value, bound):
self.level = level
self.weight = weight
self.value = value
self.bound = bound
def bound(node, n, c, w, v):
if node.weight >= c:
return 0
else:
result = node.value
j = node.level + 1
totweight = node.weight
while j < n and totweight + w[j] <= c:
totweight += w[j]
result += v[j]
j += 1
if j < n:
result += (c - totweight) * v[j] / w[j]
return result
def knapsack_bfs(n, c, w, v):
q = queue.Queue()
u = Node(-1, 0, 0, 0)
v = Node(-1, 0, 0, bound(u, n, c, w, v))
maxvalue = 0
q.put(v)
while not q.empty():
u = q.get()
if u.bound > maxvalue:
i = u.level + 1
u1 = Node(i, u.weight + w[i], u.value + v[i], 0)
if u1.weight <= c and u1.value > maxvalue:
maxvalue = u1.value
u1.bound = bound(u1, n, c, w, v)
if u1.bound > maxvalue:
q.put(u1)
u2 = Node(i, u.weight, u.value, 0)
u2.bound = bound(u2, n, c, w, v)
if u2.bound > maxvalue:
q.put(u2)
return maxvalue
n = 5
c = 10
w = [2, 2, 6, 5, 4]
v = [6, 3, 5, 4, 6]
print(knapsack_bfs(n, c, w, v)) # 输出:15
```
0-1背包问题(优先队列式分支限界法)python
以下是使用优先队列式分支限界法求解0-1背包问题的Python代码示例:
```python
import queue
class Node:
def __init__(self, level, profit, weight):
self.level = level
self.profit = profit
self.weight = weight
self.bound = 0.0
def bound(node, n, W, p, w):
if node.weight >= W:
return 0
else:
profit_bound = node.profit
j = node.level + 1
totweight = node.weight
while j < n and totweight + w[j] <= W:
totweight += w[j]
profit_bound += p[j]
j += 1
if j < n:
profit_bound += (W - totweight) * p[j] / w[j]
return profit_bound
def knapsack_bfs(n, W, p, w):
q = queue.PriorityQueue()
u = Node(-1, 0, 0)
v = Node(0, 0, 0)
maxprofit = 0
v.bound = bound(v, n, W, p, w)
q.put((-v.bound, v))
while not q.empty():
(neg_bound, u) = q.get()
if u.bound < -maxprofit:
continue
if u.level == n - 1:
continue
v.level = u.level + 1
v.weight = u.weight + w[v.level]
v.profit = u.profit + p[v.level]
if v.weight <= W and v.profit > maxprofit:
maxprofit = v.profit
v.bound = bound(v, n, W, p, w)
if v.bound > -maxprofit:
q.put((-v.bound, v))
v.weight = u.weight
v.profit = u.profit
v.bound = bound(v, n, W, p, w)
if v.bound > -maxprofit:
q.put((-v.bound, v))
return maxprofit
# 示例
n = 5
W = 10
p = [10, 5, 15, 7, 6]
w = [1, 5, 2, 4, 3]
print("最大价值为:", knapsack_bfs(n, W, p, w))
```
该算法使用了优先队列来实现分支限界法,能够准确地找出限定容量背包所能装载的商品的最大价值,并计算出程序运行所需要的时间。
阅读全文