加载state_dict 预测单张图片
时间: 2023-08-01 08:10:55 浏览: 105
判断图片加载
以下是使用PyTorch对单张图片进行模型预测的示例代码,这里使用`state_dict`加载模型:
```python
import torch
import torchvision.transforms as transforms
from PIL import Image
# 定义模型结构
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = torch.nn.Linear(320, 50)
self.fc2 = torch.nn.Linear(50, 10)
def forward(self, x):
x = torch.nn.functional.relu(torch.nn.functional.max_pool2d(self.conv1(x), 2))
x = torch.nn.functional.relu(torch.nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = torch.nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return torch.nn.functional.log_softmax(x, dim=1)
# 加载模型参数
model = Net()
model.load_state_dict(torch.load('mnist_model_state_dict.pt'))
# 定义变换
transform = transforms.Compose([
transforms.Resize((28,28)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载图片
image = Image.open('test.png').convert('L')
image = transform(image)
# 进行预测
with torch.no_grad():
output = model(image.unsqueeze(0))
_, predicted = torch.max(output.data, 1)
print('Predicted:', predicted.item())
```
其中,`mnist_model_state_dict.pt`是你已经训练好的模型参数文件,需要根据你的实际情况进行修改。在定义模型结构时,需要与训练时保持一致。在进行预测前,需要对图片进行变换,将其转化为模型所需的格式。最后,使用`model`对变换后的图片进行预测,输出预测结果。
阅读全文