if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
时间: 2024-03-11 20:43:56 浏览: 293
这段代码中的opt.linear_lr和lf是什么意思?
opt.linear_lr是一个bool类型的变量,用于表示是否使用线性学习率调度器。学习率调度器是一种用于动态调整学习率的技术,它可以帮助模型更好地收敛并提高模型的性能。在这段代码中,如果opt.linear_lr为True,则使用线性学习率调度器;否则则使用余弦退火学习率调度器。
lf是一个Python函数,用于计算学习率的变化。如果使用线性学习率调度器,则采用线性函数计算学习率变化。具体来说,lf(x) = (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'],其中x表示当前训练的epoch数,epochs表示总的训练epoch数,hyp['lrf']表示学习率的最小值。随着训练epoch数的增加,学习率逐渐减小,从而使得模型更加稳定地收敛。
如果使用余弦退火学习率调度器,则采用余弦函数计算学习率变化。具体来说,lf = one_cycle(1, hyp['lrf'], epochs),其中one_cycle()是一个自定义的函数,用于计算余弦退火学习率变化。在余弦退火学习率调度器中,学习率会在前几个epoch内快速下降,然后在后面的epoch中缓慢下降,从而使得模型更加充分地探索局部最优解。
最后,scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)用于创建一个学习率调度器对象,将lf作为学习率变化的函数。这个学习率调度器对象会在每个训练epoch结束时调用,自动更新模型的学习率。
相关问题
dense_mask = transform_A(dense_mask) 以下是transform_A的代码: if opt.resize_or_crop == 'none': base = float(2 ** opt.n_downsample_global) if opt.netG == 'local': base *= (2 ** opt.n_local_enhancers) transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
根据你提供的代码,问题出现在 `transform_A` 函数中的 `transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))` 这一行。
根据错误提示,`__make_power_2` 函数中的 `img.size` 返回的是一个整数而不是可迭代对象。这可能是因为 `dense_mask` 不是一个图像对象,而是一个整数。
请确保 `dense_mask` 是一个图像对象,可以通过调用 `type(dense_mask)` 来检查其类型。如果 `dense_mask` 不是图像对象,则需要检查在创建 `dense_mask` 时的代码逻辑,以确保其正确加载或生成图像对象。
另外,请确保你在代码中正确导入了所需的库和模块,包括 `transforms` 和 `__make_power_2` 函数。
如果问题仍然存在,请提供更多相关代码的上下文,我将尽力帮助你解决问题。
model.eval() if cuda: input1 = input1.cuda() input2 = input2.cuda() with torch.no_grad(): prediction = model(input1, input2) temp = prediction.cpu() temp = temp.detach().numpy() if height <= opt.crop_height and width <= opt.crop_width: temp = temp[0, opt.crop_height - height: opt.crop_height, opt.crop_width - width: opt.crop_width] else: temp = temp[0, :, :] skimage.io.imsave(savename, (temp * 256).astype('uint16'))
这段代码是模型进行推理的过程,首先将模型设置为评估模式(eval),然后将输入数据传入模型,得到预测结果。如果使用了 GPU 计算,需要将输入数据移动到 GPU 上。使用 torch.no_grad() 可以避免在推理过程中计算梯度。得到的预测结果是一个 PyTorch Tensor 类型,需要使用 .cpu() 将其移回 CPU 上,并使用 .detach() 将其与计算图分离,以便后续的操作不会影响计算图。将 Tensor 转化为 numpy 数组后,根据图片的尺寸进行裁剪(如果需要)。最后将预测结果保存为一张图片。这个函数的输入参数包括左右图片的 Tensor,模型,输出图片的文件名和一些其他的参数,返回值是 None。
阅读全文