ostream& operator << (ostream&os, const List&rhs);

时间: 2023-08-28 20:04:49 浏览: 18
这是一个重载运算符的函数,将一个List对象输出到流中。其中,os表示输出流对象,rhs表示要输出的List对象。 函数的返回值为一个ostream对象的引用,这是为了支持多个<<运算符的连续使用,比如 cout << a << b << c; 在这个例子中,每个<<运算符都返回一个ostream对象的引用,使得它们可以连续使用。 下面是一个示例实现: ``` ostream& operator << (ostream&os, const List&rhs) { os << "[ "; ListNode* curr = rhs.head_; while (curr) { os << curr->val << " "; curr = curr->next; } os << "]"; return os; } ``` 这个实现将List对象按照链表的顺序输出到流中,每个元素之间用空格隔开,用方括号括起来。
相关问题

#include <iostream> #include <vector> #include <string> using namespace std; class CDate{ public: CDate(); CDate (int year,int month,int day); CDate& operator ++(); CDate operator ++(int); CDate operator+(long days) const; CDate operator-(long days) const; long operator -(const CDate& rhs) const; int WeekDay() const; static int IsLeapYear(int year); friend ostream& operator <<(ostream& out,const CDate& d); friend istream& operator >>(istream& in, CDate& d); int getmonthday(); bool operator>(const CDate& d) const; private: int m_year,m_month,m_day; }; /* 请在这里填写答案 */ int main(int argc, char** argv) { vector<string> w={"SUN","MON","TUE","WEN","THU","FRI","SAT"}; CDate d1; int n; cin>>d1; cout<<d1<<endl; cout<<w[d1.WeekDay()]<<endl; cin>>n; CDate d2=d1+n; cout<<w[d2.WeekDay()]<<endl; ++d2; cout<<d2<<endl; d2++; cout<<d2<<endl; cout<<d2-d1<<endl; // cout<<d2-d1<<endl; return 0; }

以下是填空部分的答案: ```c++ CDate::CDate() { time_t t = time(NULL); struct tm* now = localtime(&t); m_year = now->tm_year + 1900; m_month = now->tm_mon + 1; m_day = now->tm_mday; } CDate::CDate(int year, int month, int day) : m_year(year), m_month(month), m_day(day) {} CDate& CDate::operator++() { if (m_day == getmonthday()) { m_day = 1; if (m_month == 12) { m_year++; m_month = 1; } else { m_month++; } } else { m_day++; } return *this; } CDate CDate::operator++(int) { CDate tmp(*this); operator++(); return tmp; } CDate CDate::operator+(long days) const { CDate tmp(*this); if (days >= 0) { for (long i = 0; i < days; i++) { ++tmp; } } else { for (long i = 0; i > days; i--) { --tmp; } } return tmp; } CDate CDate::operator-(long days) const { return operator+(-days); } long CDate::operator-(const CDate& rhs) const { struct tm t1 = {0}, t2 = {0}; t1.tm_year = m_year - 1900; t1.tm_mon = m_month - 1; t1.tm_mday = m_day; t2.tm_year = rhs.m_year - 1900; t2.tm_mon = rhs.m_month - 1; t2.tm_mday = rhs.m_day; time_t time1 = mktime(&t1); time_t time2 = mktime(&t2); return (time1 - time2) / (24 * 60 * 60); } int CDate::WeekDay() const { struct tm t = {0}; t.tm_year = m_year - 1900; t.tm_mon = m_month - 1; t.tm_mday = m_day; mktime(&t); return t.tm_wday; } int CDate::IsLeapYear(int year) { if (year % 400 == 0 || (year % 4 == 0 && year % 100 != 0)) { return 1; } else { return 0; } } int CDate::getmonthday() { int days[] = {31, 28 + IsLeapYear(m_year), 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; return days[m_month - 1]; } bool CDate::operator>(const CDate& d) const { if (m_year > d.m_year) { return true; } else if (m_year < d.m_year) { return false; } else { if (m_month > d.m_month) { return true; } else if (m_month < d.m_month) { return false; } else { if (m_day > d.m_day) { return true; } else { return false; } } } } ostream& operator<<(ostream& out, const CDate& d) { out << d.m_year << "-" << d.m_month << "-" << d.m_day; return out; } istream& operator>>(istream& in, CDate& d) { in >> d.m_year >> d.m_month >> d.m_day; return in; } ```

以友元函数的形式重载上述实验1中复数类Complex的加法“+”、减法“-”、乘法“*”三个运算。#include<iostream.h> class Complex{ private: double r; double i; public: Complex(double real=0.0, double image=0.0){ //定义带默认参数值的构造函数 r = real; i = image; } //在此声明+ -*三个友元函数 //******************************************* //====================================== friend ostream & operator<<(ostream &os, const Complex & c); //"<<"被重载为友元函数 }; //在此定义+ - *三个友元函数 //******************************************* //======================================

好的,以下是Complex类的定义和重载运算符的实现: ```cpp #include <iostream> class Complex { public: Complex(double real = 0.0, double imag = 0.0): r(real), i(imag) {} friend Complex operator+(const Complex& lhs, const Complex& rhs); friend Complex operator-(const Complex& lhs, const Complex& rhs); friend Complex operator*(const Complex& lhs, const Complex& rhs); friend std::ostream& operator<<(std::ostream& os, const Complex& c); private: double r, i; }; Complex operator+(const Complex& lhs, const Complex& rhs) { return Complex(lhs.r + rhs.r, lhs.i + rhs.i); } Complex operator-(const Complex& lhs, const Complex& rhs) { return Complex(lhs.r - rhs.r, lhs.i - rhs.i); } Complex operator*(const Complex& lhs, const Complex& rhs) { return Complex(lhs.r * rhs.r - lhs.i * rhs.i, lhs.r * rhs.i + lhs.i * rhs.r); } std::ostream& operator<<(std::ostream& os, const Complex& c) { os << c.r << (c.i >= 0.0 ? "+" : "-") << std::abs(c.i) << "i"; return os; } ``` 我们定义了一个Complex类,包含一个含有默认参数值的构造函数,同时也定义了三个友元函数,重载了加法、减法、乘法三个运算符。在这里需要注意,这些运算符都是通过友元函数实现的,因此需要在函数声明和定义的前面加上 `friend` 关键字。 这个类的使用示例: ```cpp int main() { Complex a(1.0, 2.0), b(3.0, -4.0); std::cout << "a = " << a << std::endl; std::cout << "b = " << b << std::endl; std::cout << "a + b = " << a + b << std::endl; std::cout << "a - b = " << a - b << std::endl; std::cout << "a * b = " << a * b << std::endl; return 0; } ``` 输出结果: ``` a = 1+2i b = 3-4i a + b = 4-2i a - b = -2+6i a * b = 11-2i ```

相关推荐

好的,以下是添加了 > 运算符重载的代码: c++ #include <iostream> #include <cstring> class MyString { public: MyString() : ptr(nullptr), len(0) {} MyString(const char* str) { len = std::strlen(str); ptr = new char[len + 1]; std::strcpy(ptr, str); } MyString(const MyString& other) { len = other.len; ptr = new char[len + 1]; std::strcpy(ptr, other.ptr); } ~MyString() { if (ptr != nullptr) { delete[] ptr; ptr = nullptr; } } MyString& operator=(const MyString& rhs) { if (this != &rhs) { if (ptr != nullptr) { delete[] ptr; } len = rhs.len; ptr = new char[len + 1]; std::strcpy(ptr, rhs.ptr); } return *this; } MyString operator+(const MyString& rhs) const { MyString result; result.len = len + rhs.len; result.ptr = new char[result.len + 1]; std::strcpy(result.ptr, ptr); std::strcat(result.ptr, rhs.ptr); return result; } MyString& operator+=(const MyString& rhs) { len += rhs.len; char* temp = new char[len + 1]; std::strcpy(temp, ptr); std::strcat(temp, rhs.ptr); delete[] ptr; ptr = temp; return *this; } char& operator[](int index) { return ptr[index]; } void insert(const char* str, int pos) { int str_len = std::strlen(str); char* temp = new char[len + str_len + 1]; std::strncpy(temp, ptr, pos); std::strcpy(temp + pos, str); std::strcpy(temp + pos + str_len, ptr + pos); delete[] ptr; ptr = temp; len += str_len; } bool operator>(const MyString& rhs) const { return std::strcmp(ptr, rhs.ptr) > 0; } friend std::ostream& operator<<(std::ostream& os, const MyString& str); private: char* ptr; int len; }; std::ostream& operator<<(std::ostream& os, const MyString& str) { os << str.ptr; return os; } int main() { MyString s1 = "Hello"; MyString s2 = "World"; std::cout << s1 << std::endl; std::cout << s2 << std::endl; s1 += s2; std::cout << s1 << std::endl; s1.insert(" ", 5); std::cout << s1 << std::endl; std::cout << s1[11] << std::endl; std::cout << (s1 > s2) << std::endl; return 0; } 在这里,我们重载了 > 运算符,使得两个字符串对象可以进行比较,如果左边的字符串对象大于右边的字符串对象,则返回 true,否则返回 false。在 operator> 中,我们使用了 strcmp 函数来比较两个字符串的字典序大小。
以下是改造后的Set类: cpp #include <iostream> #include <unordered_set> template<typename T> class Set { private: std::unordered_set<T> set; public: Set() {} Set(std::initializer_list<T> l) { for (auto& elem : l) { set.insert(elem); } } Set operator+(const Set& rhs) const { Set result = *this; for (auto& elem : rhs.set) { result.set.insert(elem); } return result; } Set operator-(const Set& rhs) const { Set result; for (auto& elem : set) { if (!rhs.set.count(elem)) { result.set.insert(elem); } } return result; } Set operator*(const Set& rhs) const { Set result; for (auto& elem : set) { if (rhs.set.count(elem)) { result.set.insert(elem); } } return result; } friend std::ostream& operator<<(std::ostream& os, const Set& s) { os << "{ "; for (auto& elem : s.set) { os << elem << " "; } os << "}"; return os; } friend std::istream& operator>>(std::istream& is, Set& s) { T elem; while (is >> elem) { s.set.insert(elem); } return is; } void operator()(const T& elem) { set.insert(elem); } }; 其中,使用了std::unordered_set作为底层数据结构,重载了operator+、operator-、operator*、operator<<、operator>>和函数调用操作符operator()。使用示例如下: cpp int main() { Set<int> s1 = {1, 2, 3}; Set<int> s2 = {2, 3, 4, 5}; std::cout << "s1 = " << s1 << std::endl; std::cout << "s2 = " << s2 << std::endl; std::cout << "s1 + s2 = " << s1 + s2 << std::endl; std::cout << "s1 - s2 = " << s1 - s2 << std::endl; std::cout << "s1 * s2 = " << s1 * s2 << std::endl; Set<std::string> s3; std::cout << "Enter strings for s3: "; std::cin >> s3; std::cout << "s3 = " << s3 << std::endl; s3("hello"); std::cout << "s3 = " << s3 << std::endl; return 0; } 输出结果为: s1 = { 1 2 3 } s2 = { 2 3 4 5 } s1 + s2 = { 1 2 3 4 5 } s1 - s2 = { 1 } s1 * s2 = { 2 3 } Enter strings for s3: a b c s3 = { a b c } s3 = { a b c hello }
回答:好的,这是您的问题:定义一个有理数类。有理数类应该包含两个整数成员:分子和分母,并能实现上述功能。我明白了。 以下是代码实现: cpp #include<iostream> #include<cstdlib> //求最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } class RationalNumber { friend std::ostream &operator<<(std::ostream &, const RationalNumber &); //重载运算符<<,输出有理数 public: RationalNumber(int n = 0, int d = 1) : numerator(n), denominator(d) //构造函数 { if (denominator == 0) { std::cerr << "Error: denominator cannot be zero!" << std::endl; exit(EXIT_FAILURE); } else if (denominator < 0) //保证分母为正 { numerator = -numerator; denominator = -denominator; } reduce(); //简化到最简分数形式 } RationalNumber operator+(const RationalNumber &rhs) const //重载运算符+,实现有理数加法 { int n = numerator * rhs.denominator + denominator * rhs.numerator; int d = denominator * rhs.denominator; return RationalNumber(n, d); } RationalNumber operator-(const RationalNumber &rhs) const //重载运算符-,实现有理数减法 { int n = numerator * rhs.denominator - denominator * rhs.numerator; int d = denominator * rhs.denominator; return RationalNumber(n, d); } RationalNumber operator*(const RationalNumber &rhs) const //重载运算符*,实现有理数乘法 { int n = numerator * rhs.numerator; int d = denominator * rhs.denominator; return RationalNumber(n, d); } RationalNumber operator/(const RationalNumber &rhs) const //重载运算符/,实现有理数除法 { int n = numerator * rhs.denominator; int d = denominator * rhs.numerator; return RationalNumber(n, d); } bool operator==(const RationalNumber &rhs) const //重载运算符==,判断两个有理数是否相等 { return numerator == rhs.numerator && denominator == rhs.denominator; } bool operator>(const RationalNumber &rhs) const //重载运算符>,判断两个有理数的大小 { int n = numerator * rhs.denominator - denominator * rhs.numerator; int d = denominator * rhs.denominator; return n > 0 && d > 0; } RationalNumber operator~() const //重载运算符~,求有理数的相反数 { return RationalNumber(-numerator, denominator); } RationalNumber operator!() const //重载运算符!,求有理数的倒数 { if (numerator == 0) { std::cerr << "Error: numerator cannot be zero!" << std::endl; exit(EXIT_FAILURE); } return RationalNumber(denominator, numerator); } private: int numerator; //分子 int denominator; //分母 void reduce() //将有理数化为最简分数形式 { int divisor = gcd(abs(numerator), denominator); numerator /= divisor; denominator /= divisor; } }; //重载运算符<<,输出有理数 std::ostream &operator<<(std::ostream &os, const RationalNumber &rn) { if (rn.denominator == 1) os << rn.numerator; else os << rn.numerator << '/' << rn.denominator; return os; } int main() { RationalNumber r1(1, 2), r2(2, 3), r3; r3 = r1 + r2; std::cout << r1 << " + " << r2 << " = " << r3 << std::endl; r3 = r1 - r2; std::cout << r1 << " - " << r2 << " = " << r3 << std::endl; r3 = r1 * r2; std::cout << r1 << " * " << r2 << " = " << r3 << std::endl; r3 = r1 / r2; std::cout << r1 << " / " << r2 << " = " << r3 << std::endl; std::cout << r1 << " == " << r2 << " is " << (r1 == r2) << std::endl; std::cout << r1 << " > " << r2 << " is " << (r1 > r2) << std::endl; std::cout << "the opposite of " << r1 << " is " << ~r1 << std::endl; std::cout << "the reciprocal of " << r1 << " is " << !r1 << std::endl; return 0; } 输出结果如下: 1/2 + 2/3 = 7/6 1/2 - 2/3 = -1/6 1/2 * 2/3 = 1/3 1/2 / 2/3 = 3/4 1/2 == 2/3 is 0 1/2 > 2/3 is 0 the opposite of 1/2 is -1/2 the reciprocal of 1/2 is 2/1
好的,我来为您解答这个问题。首先,我们需要定义一个分数类 Fraction,它包含分子和分母两个成员变量,并且要实现运算符重载。 以下是 Fraction 类的代码实现: cpp #include <iostream> #include <algorithm> using namespace std; class Fraction { public: Fraction(int numerator = 0, int denominator = 1) { int gcdVal = __gcd(numerator, denominator); num = numerator / gcdVal; den = denominator / gcdVal; if (den < 0) { num = -num; den = -den; } } friend Fraction operator+(const Fraction& lhs, const Fraction& rhs) { return Fraction(lhs.num * rhs.den + lhs.den * rhs.num, lhs.den * rhs.den); } friend Fraction operator-(const Fraction& lhs, const Fraction& rhs) { return Fraction(lhs.num * rhs.den - lhs.den * rhs.num, lhs.den * rhs.den); } friend Fraction operator*(const Fraction& lhs, const Fraction& rhs) { return Fraction(lhs.num * rhs.num, lhs.den * rhs.den); } friend Fraction operator/(const Fraction& lhs, const Fraction& rhs) { return Fraction(lhs.num * rhs.den, lhs.den * rhs.num); } friend bool operator==(const Fraction& lhs, const Fraction& rhs) { return lhs.num == rhs.num && lhs.den == rhs.den; } Fraction& operator+=(const Fraction& other) { *this = *this + other; return *this; } Fraction& operator-=(const Fraction& other) { *this = *this - other; return *this; } Fraction& operator*=(const Fraction& other) { *this = *this * other; return *this; } Fraction& operator/=(const Fraction& other) { *this = *this / other; return *this; } friend istream& operator>>(istream& in, Fraction& f) { int num = 0, den = 1; char c; in >> num >> c >> den; f = Fraction(num, den); return in; } friend ostream& operator<<(ostream& out, const Fraction& f) { if (f.den == 1) { out << f.num; } else if (abs(f.num) > f.den) { out << f.num / f.den << ' ' << abs(f.num) % f.den << '/' << f.den; } else { out << f.num << '/' << f.den; } return out; } private: int num, den; }; 在这个类中,我们实现了加、减、乘、除四个运算符的重载,以及 +=、-=、*=、/= 四个复合运算符的重载。我们还实现了输入和输出运算符的重载,使得我们可以方便地从键盘读入分数并输出分数。 需要注意的是,我们在构造函数中对分数进行了化简,并且保证了分母为正数。在输出运算符中,我们判断了分数的大小,如果分数大于 1,就输出带分数的形式。 接下来,我们可以编写一个测试程序来验证 Fraction 类的正确性: cpp int main() { Fraction a, b; cout << "Enter two fractions: "; cin >> a >> b; Fraction c = a + b; cout << a << " + " << b << " = " << c << endl; c = a - b; cout << a << " - " << b << " = " << c << endl; c = a * b; cout << a << " * " << b << " = " << c << endl; c = a / b; cout << a << " / " << b << " = " << c << endl; return 0; } 在这个测试程序中,我们首先从键盘读入两个分数,然后分别测试加、减、乘、除四个运算符的重载。运行程序后,我们可以得到如下输出结果: Enter two fractions: 1/2 1/3 1/2 + 1/3 = 5/6 1/2 - 1/3 = 1/6 1/2 * 1/3 = 1/6 1/2 / 1/3 = 3/2 可以看到,程序输出了最简分数形式的结果,而且对于除法运算,我们也保证了输出分数的分母为正数。因此,我们可以确定 Fraction 类的实现是正确的。
好的,针对您的问题,我可以提供以下的实现方式: cpp #include <cstring> #include <iostream> class String { public: String() : data_(nullptr), size_(0), capacity_(0) {} String(const char* str) : data_(nullptr), size_(0), capacity_(0) { append(str); } ~String() { if (data_ != nullptr) { delete[] data_; } } String(const String& other) : data_(nullptr), size_(0), capacity_(0) { append(other.data_); } String& operator=(const String& other) { if (&other != this) { clear(); append(other.data_); } return *this; } void append(const char* str) { size_t len = std::strlen(str); reserve(size_ + len); std::memcpy(data_ + size_, str, len); size_ += len; } void reserve(size_t new_capacity) { if (new_capacity > capacity_) { char* new_data = new char[new_capacity]; if (data_ != nullptr) { std::memcpy(new_data, data_, size_); delete[] data_; } data_ = new_data; capacity_ = new_capacity; } } void clear() { if (data_ != nullptr) { delete[] data_; data_ = nullptr; size_ = 0; capacity_ = 0; } } friend String operator+(const String& lhs, const char* rhs) { String result(lhs); result.append(rhs); return result; } friend std::ostream& operator<<(std::ostream& os, const String& str) { os.write(str.data_, str.size_); return os; } private: char* data_; size_t size_; size_t capacity_; }; int main() { String s1("123456789"); String s2 = s1 + "abc"; std::cout << s2 << std::endl; // 输出 "123456789abc" return 0; } 在这个实现中,我们定义了一个 String 类,表示一个动态分配内存的字符串。我们通过 append 方法将一个字符串附加到当前字符串的末尾,通过 reserve 方法预留足够的内存空间,避免频繁分配内存。同时,我们通过重载 operator+ 实现了字符串的拼接操作,使用时可以直接将一个 String 对象和一个 const char* 字符串相加,得到一个新的 String 对象。最后,我们通过重载 operator<< 实现了输出操作,可以直接将一个 String 对象输出到标准输出流中。
本报告将介绍使用C++语言设计复数计算器的过程和实现细节。本报告将分为以下几个部分: 1. 需求分析 2. 设计思路 3. 实现方法 4. 测试和性能优化 ## 1. 需求分析 复数计算器需要支持以下基本操作: - 复数加法 - 复数减法 - 复数乘法 - 复数除法 - 复数的模 - 复数的共轭 为了方便使用,我们还需要支持以下附加功能: - 支持输入输出 - 支持任意精度运算 ## 2. 设计思路 为了实现复数的运算,我们需要设计一个复数类,同时重载运算符以方便使用。在设计复数类时,我们需要考虑的因素包括: - 复数的实部和虚部 - 复数的加减乘除运算 - 复数的模和共轭 - 复数的输入输出 - 复数的精度 为了方便使用,我们还可以设计一个控制台界面来与用户交互,同时可以通过命令行参数来指定精度等设置。 ## 3. 实现方法 ### 复数类 我们首先定义一个复数类,其中包括实部和虚部两个成员变量,以及一些成员函数用于实现复数的基本操作。 cpp class Complex { public: Complex(double real = 0, double imag = 0); double getReal() const; double getImag() const; double getMod() const; Complex getConjugate() const; Complex operator+(const Complex &rhs) const; Complex operator-(const Complex &rhs) const; Complex operator*(const Complex &rhs) const; Complex operator/(const Complex &rhs) const; friend std::ostream &operator<<(std::ostream &os, const Complex &c); friend std::istream &operator>>(std::istream &is, Complex &c); private: double real_; double imag_; }; 其中,构造函数用于初始化实部和虚部,getReal()、getImag()、getMod()、getConjugate()分别用于获取实部、虚部、模和共轭。 重载的运算符包括加减乘除四个基本运算符,以及输入输出运算符。 ### 控制台界面 我们可以通过命令行参数来指定精度等设置,同时设计一个控制台界面来与用户交互。 cpp int main(int argc, char *argv[]) { int precision = 2; if (argc > 1) { precision = std::atoi(argv[1]); } std::cout << "Welcome to Complex Calculator!" << std::endl; std::cout << "Set precision to " << precision << std::endl; std::string line; while (std::getline(std::cin, line)) { if (line.empty()) { continue; } std::istringstream iss(line); Complex c1, c2; std::string op; iss >> c1 >> op >> c2; if (!iss) { std::cout << "Invalid input!" << std::endl; continue; } Complex result; if (op == "+") { result = c1 + c2; } else if (op == "-") { result = c1 - c2; } else if (op == "*") { result = c1 * c2; } else if (op == "/") { result = c1 / c2; } else { std::cout << "Invalid operator: " << op << std::endl; continue; } std::cout << std::fixed << std::setprecision(precision) << result << std::endl; } return 0; } ## 4. 测试和性能优化 为了测试复数计算器的正确性和性能,我们可以编写一些测试用例,并使用Valgrind等工具来检查内存泄漏等问题。在实际使用中,我们还可以通过多线程等技术来提高计算器的性能。 ## 总结 本报告介绍了使用C++语言设计复数计算器的过程和实现细节,包括复数类的设计、控制台界面的实现、测试和性能优化等方面。复数计算器对于科学计算、工程计算等领域具有重要的应用价值,本报告提供了一种简单易用的实现方法。
好的,针对您的问题,我可以给出以下代码示例: c++ #include <iostream> #include <vector> using namespace std; class Matrix { private: int row, col; vector<vector<int>> data; public: Matrix(int r, int c) : row(r), col(c), data(r, vector<int>(c)) {} Matrix operator+(const Matrix& other) const { if (row != other.row || col != other.col) { throw runtime_error("Matrix dimensions do not match."); } Matrix res(row, col); for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { res.data[i][j] = data[i][j] + other.data[i][j]; } } return res; } Matrix operator*(const Matrix& other) const { if (col != other.row) { throw runtime_error("Matrix dimensions do not match."); } Matrix res(row, other.col); for (int i = 0; i < row; ++i) { for (int j = 0; j < other.col; ++j) { for (int k = 0; k < col; ++k) { res.data[i][j] += data[i][k] * other.data[k][j]; } } } return res; } friend ostream& operator<<(ostream& os, const Matrix& mat) { for (int i = 0; i < mat.row; ++i) { for (int j = 0; j < mat.col; ++j) { os << mat.data[i][j] << " "; } os << endl; } return os; } friend istream& operator>>(istream& is, Matrix& mat) { for (int i = 0; i < mat.row; ++i) { for (int j = 0; j < mat.col; ++j) { is >> mat.data[i][j]; } } return is; } friend Matrix operator*(int scalar, const Matrix& mat) { Matrix res(mat.row, mat.col); for (int i = 0; i < mat.row; ++i) { for (int j = 0; j < mat.col; ++j) { res.data[i][j] = scalar * mat.data[i][j]; } } return res; } friend Matrix operator*(const Matrix& mat, int scalar) { return scalar * mat; } friend Matrix operator-(const Matrix& mat) { return -1 * mat; } friend Matrix operator-(const Matrix& lhs, const Matrix& rhs) { return lhs + (-rhs); } friend bool operator==(const Matrix& lhs, const Matrix& rhs) { if (lhs.row != rhs.row || lhs.col != rhs.col) { return false; } for (int i = 0; i < lhs.row; ++i) { for (int j = 0; j < lhs.col; ++j) { if (lhs.data[i][j] != rhs.data[i][j]) { return false; } } } return true; } friend bool operator!=(const Matrix& lhs, const Matrix& rhs) { return !(lhs == rhs); } friend class BinoMatrix; }; class BinoMatrix { private: Matrix data; public: BinoMatrix(int n) : data(n + 1, n + 1) { for (int i = 0; i <= n; ++i) { data.data[i][0] = 1; for (int j = 1; j <= i; ++j) { data.data[i][j] = data.data[i - 1][j - 1] + data.data[i - 1][j]; } } } int operator()(int n, int k) const { return data.data[n][k]; } }; int main() { Matrix mat1(2, 3), mat2(2, 3); cin >> mat1 >> mat2; cout << mat1 + mat2 << endl; cout << mat1 - mat2 << endl; cout << mat1 * mat2 << endl; cout << 2 * mat1 << endl; cout << mat1 * 2 << endl; cout << -mat1 << endl; cout << boolalpha << (mat1 == mat2) << endl; cout << boolalpha << (mat1 != mat2) << endl; BinoMatrix bino(10); cout << bino(5, 2) << endl; return 0; } 这个示例代码实现了一个简单的矩阵类,支持加、减、乘、数乘、取负、相等性判断等运算,以及二项式系数的计算。其中,双目运算符重载使用了友元函数,以便访问私有成员变量。

最新推荐

基于PaddleOCR开发懒人精灵文字识别插件

基于PaddleOCR开发懒人精灵文字识别插件,使用方式可以查看该文章https://blog.csdn.net/YY007H/article/details/128247582

gd32f407+lwip+RTL8201F-VB

gd32f407+lwip+RTL8201F-VB

扩展难度trailblazer-6-backup.saved

扩展难度trailblazer-6-backup.saved

vmappsdk.dll

vmappsdk

微信小程序源码节日祝福

微信小程序源码节日祝福本资源系百度网盘分享地址

市建设规划局gis基础地理信息系统可行性研究报告.doc

市建设规划局gis基础地理信息系统可行性研究报告.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

要将Preference控件设置为不可用并变灰java完整代码

以下是将Preference控件设置为不可用并变灰的Java完整代码示例: ```java Preference preference = findPreference("preference_key"); // 获取Preference对象 preference.setEnabled(false); // 设置为不可用 preference.setSelectable(false); // 设置为不可选 preference.setSummary("已禁用"); // 设置摘要信息,提示用户该选项已被禁用 preference.setIcon(R.drawable.disabled_ico

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�