stm32三个串口同时工作的优先级设置

时间: 2023-08-21 11:03:31 浏览: 240
在STM32中,可以通过NVIC(Nested Vectored Interrupt Controller)设置不同的中断优先级。对于三个串口同时工作的情况,可以通过以下步骤设置优先级: 1. 确定三个串口的中断向量号,例如USART1的中断向量号为USART1_IRQn,USART2的中断向量号为USART2_IRQn,USART3的中断向量号为USART3_IRQn。 2. 在NVIC中使能三个串口的中断,使能方法为使用NVIC_EnableIRQ函数,例如NVIC_EnableIRQ(USART1_IRQn)。 3. 设置每个中断的优先级,使用NVIC_SetPriority函数,例如NVIC_SetPriority(USART1_IRQn, 2),这里将USART1的优先级设置为2,数值越小表示优先级越高。 4. 根据实际需求设置每个中断的优先级,可以设置成相同的优先级,也可以设置成不同的优先级。 需要注意的是,STM32中的中断优先级是分组的,具体分组方式可以查看芯片的数据手册。在设置中断优先级时,需要根据实际情况进行分组设置。
相关问题

STM32串口中断发送

在STM32中,要实现串口中断发送,需要进行以下几个步骤: 1. 首先,需要使能串口的发送完成中断。可以使用函数USART_ITConfig来实现,其中第一个参数是指定使用的串口,第二个参数是指定中断类型,第三个参数是使能或禁用中断。例如,要使能串口3的发送完成中断,可以使用以下代码: USART_ITConfig(USART3, USART_IT_TC, ENABLE); 2. 接下来,需要在中断服务函数中编写相应的逻辑代码。对于串口3,中断服务函数的名称是USART3_IRQHandler。在该函数中,可以编写发送数据的逻辑代码。 3. 在初始化NVIC时,需要设置中断优先级分组,并使能相应的中断。可以使用函数NVIC_Init来实现。例如,要设置串口1的中断优先级分组为3,可以使用以下代码: NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); 需要注意的是,在使用串口中断发送之前,需要先设置系统的中断优先级分组。可以使用函数NVIC_PriorityGroupConfig来设置。例如,设置分组为2,即2位抢占优先级和2位响应优先级,可以使用以下代码: NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); 通过以上步骤,就可以实现STM32串口中断发送功能。

基于stm32单片机编写定时器三中断温度实时显示程序

好的,下面是基于STM32单片机编写定时器三中断温度实时显示程序的代码: ```c #include "stm32f10x.h" #define ADC1_DR_Address ((uint32_t)0x4001244C) __IO uint16_t ADCConvertedValue; void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOC, &GPIO_InitStructure); } void ADC_Configuration(void) { ADC_InitTypeDef ADC_InitStructure; DMA_InitTypeDef DMA_InitStructure; RCC_ADCCLKConfig(RCC_PCLK2_Div6); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADCConvertedValue; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_BufferSize = 1; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_239Cycles5); ADC_DMACmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while(ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while(ADC_GetCalibrationStatus(ADC1)); } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); TIM_TimeBaseStructure.TIM_Period = 1000 - 1; TIM_TimeBaseStructure.TIM_Prescaler = 7200 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); TIM_Cmd(TIM3, ENABLE); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } int main(void) { GPIO_Configuration(); ADC_Configuration(); TIM_Configuration(); NVIC_Configuration(); while(1); } void TIM3_IRQHandler(void) { if(TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); printf("Temperature: %.2f C\r\n", (float)ADCConvertedValue / 4096 * 3.3 / 3 * 100); } } ``` 这个程序的实现过程是这样的: 1. 首先进行GPIO的初始化,将PC0配置为模拟输入模式。 2. 接下来进行ADC的初始化,配置DMA通道和ADC采样通道,使其可以连续采样,并将采样值传输到指定的内存地址中。 3. 然后进行定时器的初始化,将定时器3的时钟源设置为72MHz,预分频系数为7200,计数器自动重装载值为1000,中断周期为1s。 4. 最后进行中断优先级的配置,将定时器3中断的抢占优先级设置为0,子优先级设置为1。 在定时器3中断服务函数中,将采样值转换为温度值,并通过串口输出到PC终端。 需要注意的是,这个程序中使用了printf函数进行字符串格式化输出,需要在工程属性中开启SEMIHOSTING选项。

相关推荐

最新推荐

recommend-type

STM32单片机串口通讯代码

STM32单片机串口通讯代码是STM32开发中最常用的接口之一。通过串口,我们可以方便地把数据输出到电脑,方便我们进行程序调试。在STM32开发中,串口通讯代码是必不可少的一部分。下面我们来看看STM32的串口通讯代码是...
recommend-type

STM32F103RE学习笔记-串口中断学习

串口中断初始化主要包括三个步骤:时钟使能配置、中断配置和 GPIO 复用功能配置。 1. 时钟使能配置 在进行串口中断编程时,需要使能 USART1 时钟、GPIOA 时钟和 GPIO 复用(AFIO)时钟。使用以下代码可以完成时钟使...
recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。