np.arange函数解析

时间: 2024-03-01 10:45:39 浏览: 161
np.arange函数是NumPy库中的一个函数,用于创建一个等差数列。它的语法为:np.arange(start, stop, step, dtype=None)。其中,start表示数列的起始值,stop表示数列的结束值(不包含),step表示数列中每个元素之间的步长,dtype表示数列的数据类型。如果不指定dtype,则默认为整数类型。与linspace函数不同的是,arange函数的步长可以是小数。在你提供的例子中,np.arange(0,10,1)表示从0开始,每次增加1,直到10(不包含10)为止,生成一个整数序列[0,1,2,3,4,5,6,7,8,9]。而x = np.arange(1000,1500,0.1)则表示从1000开始,每次增加0.1,直到1500(不包含1500)为止,生成一个小数序列。
相关问题

分析代码def motion_compensate(img, Mvx, Mvy, pel): m, n = np.shape(img)[0], np.shape(img)[1] #读取行数、列数 img = resize(img, (np.int32(m/pel), np.int32(n/pel)), mode = 'reflect' ) Blocksize = np.floor(np.shape(img)[0]/np.shape(Mvx)[0]) m, n = np.shape(img)[0], np.shape(img)[1] M, N = np.int32(np.ceil(m/Blocksize)*Blocksize), np.int32(np.ceil(n/Blocksize)*Blocksize) f = img[0:M, 0:N] Mvxmap = resize(Mvy, (N,M)) Mvymap = resize(Mvx, (N,M)) xgrid, ygrid = np.meshgrid(np.arange(0,N-0.99), np.arange(0,M-0.99)) X = np.clip(xgrid+np.round(Mvxmap/pel),0,N-1) Y = np.clip(ygrid+np.round(Mvymap/pel),0,M-1) idx = np.int32(Y.flatten()*N + X.flatten()) f_vec = f.flatten() g = np.reshape(f_vec[idx],[N,M]) g = resize(g, (np.shape(g)[0]*pel,np.shape(g)[1]*pel)) return g

这段代码实现了运动补偿的功能,下面是对代码的详细解析: 1. 首先获取图像的行数和列数。 2. 通过resize函数对图像进行下采样,以减少计算量,pel为下采样的倍数。 3. 根据运动矢量的大小计算出块的大小,即Blocksize。 4. 将下采样后的图像f扩展到M*N的大小。 5. 将运动矢量Mvx和Mvy分别通过resize函数扩展到M*N的大小,得到Mvxmap和Mvymap。 6. 使用np.meshgrid函数创建网格,得到xgrid和ygrid。 7. 根据运动矢量的大小,计算出在当前帧中块的新位置,并使用np.clip函数将其限制在图像范围内,得到X和Y。 8. 将X和Y展平,并计算出在展平后的向量中的索引值idx。 9. 将f展平为f_vec,并使用idx将其重新排列为M*N的矩阵g。 10. 对g进行上采样,并返回结果g。 这段代码的作用是对输入的图像进行运动补偿处理,通过运动矢量Mvx和Mvy计算出图像中块的新位置,从而得到补偿后的图像。其中,运动矢量的大小决定了块的大小,而下采样和上采样则用于减少计算量和消除补偿后的锯齿状伪影。

np.linspace函数解析

np.linspace函数是numpy库中的一个函数,用于生成等差数列。它的语法为np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)。其中,start和stop分别表示数列的起始值和终止值,num表示数列中的元素个数,默认为50,endpoint表示数列是否包含终止值,默认为True,retstep表示是否返回数列的步长,默认为False,dtype表示数列的数据类型,默认为None。与np.arange函数不同的是,np.linspace函数可以直接指定数列中元素的个数,而不需要指定步长。在使用np.linspace函数时,需要注意的是,如果要生成的数列中元素的个数为n,则start和stop之间的间隔为(stop-start)/(n-1)。
阅读全文

相关推荐

解释代码def genBlurImage(p_obj, img): smax = p_obj['delta0'] / p_obj['D'] * p_obj['N'] temp = np.arange(1,101) patchN = temp[np.argmin((smax*np.ones(100)/temp - 2)**2)] patch_size = round(p_obj['N'] / patchN) xtemp = np.round_(p_obj['N']/(2*patchN) + np.linspace(0, p_obj['N'] - p_obj['N']/patchN + 0.001, patchN)) xx, yy = np.meshgrid(xtemp, xtemp) xx_flat, yy_flat = xx.flatten(), yy.flatten() NN = 32 # For extreme scenarios, this may need to be increased img_patches = np.zeros((p_obj['N'], p_obj['N'], int(patchN**2))) den = np.zeros((p_obj['N'], p_obj['N'])) patch_indx, patch_indy = np.meshgrid(np.linspace(-patch_size, patch_size+0.001, num=2*patch_size+1), np.linspace(-patch_size, patch_size+0.001, num=2*patch_size+1)) for i in range(int(patchN**2)): aa = genZernikeCoeff(36, p_obj['Dr0']) temp, x, y, nothing, nothing2 = psfGen(NN, coeff=aa, L=p_obj['L'], D=p_obj['D'], z_i=1.2, wavelength=p_obj['wvl']) psf = np.abs(temp) ** 2 psf = psf / np.sum(psf.ravel()) focus_psf, _, _ = centroidPsf(psf, 0.85) #: Depending on the size of your PSFs, you may want to use this psf = resize(psf, (round(NN/p_obj['scaling']), round(NN/p_obj['scaling']))) patch_mask = np.zeros((p_obj['N'], p_obj['N'])) patch_mask[round(xx_flat[i]), round(yy_flat[i])] = 1 patch_mask = scipy.signal.fftconvolve(patch_mask, np.exp(-patch_indx**2/patch_size**2)*np.exp(-patch_indy**2/patch_size**2)*np.ones((patch_size*2+1, patch_size*2+1)), mode='same') den += scipy.signal.fftconvolve(patch_mask, psf, mode='same') img_patches[:,:,i] = scipy.signal.fftconvolve(img * patch_mask, psf, mode='same') out_img = np.sum(img_patches, axis=2) / (den + 0.000001) return out_img

def outliers_proc(data, col_name, scale = 3): # data:原数据 # col_name:要处理异常值的列名称 # scale:用来控制删除尺度的 def box_plot_outliers(data_ser, box_scale): iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25)) # quantile是取出数据对应分位数的数值 val_low = data_ser.quantile(0.25) - iqr # 下界 val_up = data_ser.quantile(0.75) + iqr # 上界 rule_low = (data_ser < val_low) # 筛选出小于下界的索引 rule_up = (data_ser > val_up) # 筛选出大于上界的索引 return (rule_low, rule_up),(val_low, val_up) data_n = data.copy() data_series = data_n[col_name] # 取出对应数据 rule, values = box_plot_outliers(data_series, box_scale = scale) index = np.arange(data_series.shape[0])[rule[0] | rule[1]] # 先产生0到n-1,然后再用索引把其中处于异常值的索引取出来 print("Delete number is {}".format(len(index))) data_n = data_n.drop(index) # 整行数据都丢弃 data_n.reset_index(drop = True, inplace = True) # 重新设置索引 print("Now column number is:{}".format(data_n.shape[0])) index_low = np.arange(data_series.shape[0])[rule[0]] outliers = data_series.iloc[index_low] # 小于下界的值 print("Description of data less than the lower bound is:") print(pd.Series(outliers).describe()) index_up = np.arange(data_series.shape[0])[rule[1]] outliers = data_series.iloc[index_up] print("Description of data larger than the lower bound is:") print(pd.Series(outliers).describe()) fig, axes = plt.subplots(1,2,figsize = (10,7)) ax1 = sns.boxplot(y = data[col_name], data = data, palette = "Set1", ax = axes[0]) ax1.set_title("处理异常值前") ax2 = sns.boxplot(y = data_n[col_name], data = data_n, palette = "Set1", ax = axes[1]) ax2.set_title("处理异常值后") return data_n代码每一行解析

最新推荐

recommend-type

怎么用python读取cifar10数据集.docx

以下是一个基本的Python脚本,用于读取和解析CIFAR-10数据: 1. 导入必要的库: ```python import pickle import cv2 ``` 2. 定义加载函数: ```python def load(filename): with open(filename, 'rb') as fo: ...
recommend-type

对numpy中数组元素的统一赋值实例

arr3 = np.arange(6).reshape(2, 3) arr3[arr3 &gt; 2] = -1 # 将大于2的元素赋值为-1 ``` 这样的操作利用了NumPy的广播规则,允许我们在不同形状的数组之间进行运算,只要它们的形状可以兼容。 综上所述,NumPy中对...
recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,