数据结构c++一元多项式

时间: 2024-05-25 08:09:28 浏览: 18
C++中的一元多项式可以用一个结构体来表示。该结构体包含两个变量,一个是系数,一个是指数。可以用一个数组来存储这些结构体。以下是一个简单的代码示例: ``` struct PolyNode { double coef; // 系数 int exp; // 指数 }; const int MAXN = 1010; PolyNode poly[MAXN]; int cur = 0; // 当前下标 // 插入一项 void insert(double coef, int exp) { poly[cur].coef = coef; poly[cur].exp = exp; cur++; } // 输出多项式 void print() { for (int i = 0; i < cur; i++) { printf("%.2lfX^%d", poly[i].coef, poly[i].exp); if (i != cur - 1) printf(" + "); } printf("\n"); } ``` 以上代码实现了一元多项式的插入和输出。你可以根据需要进行修改和扩展。如果你有其他问题,请继续提问。
相关问题

c++数据结构一元多项式相加

### 回答1: 一元多项式相加是在数据结构中比较基础的一部分,也是我们在数学中常见的操作。在计算机中,我们通常将多项式看作一个数组(或链表)的形式,其中数组下标表示该项的指数,数组中存放的值表示该项的系数。两个多项式相加就是将两个数组对应项的系数相加得到一个新的数组。 具体步骤如下: 1. 定义一个数组(或链表)来存放结果多项式,长度为两个原始多项式中指数最大的项数加1。 2. 遍历两个原始多项式数组(或链表),将对应项的系数相加,赋值给结果数组的对应项。 3. 返回结果数组(或链表)。 当然,在实现过程中还需注意以下几点: 1. 若某个多项式存在系数为0的项,则计算时应该忽略该项,即不将其对应项相加到结果数组中。 2. 当两个原始多项式不等长时,需在系数较短的数组中补0,使其长度与较长数组相等。 3. 若相加的结果系数为0,则结果多项式也应该忽略该项,即不将其加入到结果数组中。 总之,一元多项式的加法并不复杂,只需遍历数组,将对应项的系数相加即可。需要注意的是,在实现过程中考虑越界以及忽略系数为0的项这些问题。 ### 回答2: 一元多项式的运算主要包括加、减、乘和求导等,其中加法是最基本的一种运算。在数据结构中,我们可以用链表来表示一元多项式,在链表中每个结点表示一个单项式,包含系数和指数两个数据项。对于两个一元多项式的相加,则需要对它们的各个单项式进行合并,合并的方法是按照单项式的指数大小进行排序,然后分别将同一指数的单项式的系数相加得到新的单项式,最终得到一个新的一元多项式。 具体实现上,可以通过定义一个新的链表来存储结果,然后使用两个指针分别遍历两个原始的链表,根据两个指针所对应的单项式的指数关系来决定需要将哪个单项式加入到结果链表中。需要注意的是,在遍历的过程中,如果出现同一指数的单项式,则需要将它们的系数相加得到新的单项式,否则直接将单项式插入结果链表中即可。 在实现过程中,可以使用一个小技巧来简化代码,即使用一个哑结点作为结果链表的头结点,这样就可以省略对链表进行空判断的代码。同时,为了提高运算效率,可以对原始链表进行排序,使得它们的单项式按照指数大小排列,从而便于遍历和合并。 综上所述,一元多项式的相加需要按照单项式的指数大小进行排序,然后遍历两个原始链表,合并同一指数的单项式并插入结果链表中,最终得到一个新的一元多项式。具体实现需要考虑空链表和排序等细节问题。 ### 回答3: 一元多项式相加是数据结构中的一个重要问题。我们需要定义一个多项式的结构体,同时考虑到指数可能不是连续的整数,我们需要使用链表来保存每一项的系数和指数。具体来说,结构体的定义如下: ```c typedef struct node { int coefficient; // 系数 int exponent; // 指数 struct node* next; // 下一项 } polynomial; ``` 接下来,我们可以先将两个多项式按指数从小到大排序,然后使用“归并”算法将它们相加。具体来说,分别遍历两个多项式的链表,按指数大小比较,将系数较小的项插入结果链表,并且修改指针。最后,如果有多余项,直接将它们接在结果链表的末尾即可。 具体实现如下: ```c polynomial* add(polynomial* p1, polynomial* p2) { polynomial* result = (polynomial*)malloc(sizeof(polynomial)); polynomial* cur = result; while (p1 && p2) { if (p1->exponent < p2->exponent) { cur->next = p1; p1 = p1->next; } else if (p1->exponent > p2->exponent) { cur->next = p2; p2 = p2->next; } else { cur->next = p1; cur->next->coefficient += p2->coefficient; p1 = p1->next; p2 = p2->next; } cur = cur->next; } cur->next = p1 ? p1 : p2; return result->next; } ``` 最后,记得要释放内存。

数据结构一元多项式c++加减

以下是一元多项式的C++加减代码示例: ```c++ #include<iostream> using namespace std; struct node{ int coef,exp; node *next; }; node *create(int n){ node *head,*p,*q; head=new node; head->next=NULL; q=head; for(int i=1;i<=n;i++){ p=new node; cin>>p->coef>>p->exp; p->next=NULL; q->next=p; q=p; } return head; } node *add(node *a,node *b){ node *head,*p,*q,*r; head=new node; head->next=NULL; p=a->next; q=b->next; r=head; while(p!=NULL&&q!=NULL){ if(p->exp<q->exp){ r->next=p; r=p; p=p->next; } else if(p->exp>q->exp){ r->next=q; r=q; q=q->next; } else{ if(p->coef+q->coef!=0){ p->coef+=q->coef; r->next=p; r=p; } p=p->next; q=q->next; } } if(p!=NULL) r->next=p; if(q!=NULL) r->next=q; return head; } node *sub(node *a,node *b){ node *head,*p,*q,*r; head=new node; head->next=NULL; p=a->next; q=b->next; r=head; while(p!=NULL&&q!=NULL){ if(p->exp<q->exp){ r->next=p; r=p; p=p->next; } else if(p->exp>q->exp){ q->coef=-q->coef; r->next=q; r=q; q=q->next; } else{ if(p->coef-q->coef!=0){ p->coef-=q->coef; r->next=p; r=p; } p=p->next; q=q->next; } } while(p!=NULL){ r->next=p; r=p; p=p->next; } while(q!=NULL){ q->coef=-q->coef; r->next=q; r=q; q=q->next; } return head; } void print(node *head){ node *p; p=head->next; while(p!=NULL){ cout<<p->coef<<" "<<p->exp<<endl; p=p->next; } } int main(){ int n,m; node *a,*b,*c,*d; cin>>n>>m; a=create(n); b=create(m); c=add(a,b); d=sub(a,b); print(c); print(d); return 0; } ```

相关推荐

最新推荐

recommend-type

数据结构 一元多项式运算 C++实现

数据结构一元多项式运算 C++实现 一、设计简要说明 本程序“一元多项式运算”是以实现一元多项式的简单运算为目的的简单程序。该程序界面友好,操作方便。能对一元多项式进行求导,相加,相乘等运算。 二、程序...
recommend-type

C语言:一元多项式加减法运算(链表 附答案).docx

《C语言实现一元多项式加减法运算的链表方法》 在计算机科学中,数据结构和算法是解决问题的基础工具。本篇文章将探讨如何使用C语言通过链表实现一元多项式的加减法运算。这是一道适合初学者的链表实践题目,通过这...
recommend-type

数据结构实验报告之一元多项式求和(链表)报告2.doc

实验内容:一元多项式求和。 把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,计算它们的和并输出计算结果。 实验内容: 1.问题描述: 一元多项式求和——把任意给定的两个一元多项式P(x) ,Q(x) 输入计算机,...
recommend-type

C++数据结构课程设计一元多项式运算

【一元多项式运算】是计算机科学中一种基础的数据结构应用,主要涉及到链表操作和数学算法。在C++中实现一元多项式运算通常包括输入、求导、相加、相乘等基本操作。下面将详细介绍这些知识点。 1. **输入函数**:`...
recommend-type

一元多项式求和问题的研究与实现

在本文中,我们探讨了如何利用数据结构和算法解决一元多项式求和的问题。一元多项式通常表示为 \( A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \),其中 \( n+1 \) 个系数唯一定义了多项式。当处理两个一元多项式...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。