数据结构实现一元多项式加法运算

时间: 2023-05-29 08:06:44 浏览: 46
一元多项式可以用链表来实现,每个节点表示一个项,包含系数和指数两个成员变量。加法运算就是将两个链表按照指数从小到大的顺序依次合并,如果两个节点的指数相同,则将它们的系数相加,否则将指数小的节点插入到结果链表中。 以下是 C++ 实现代码: ```c++ #include <iostream> using namespace std; struct Node { int coef; // 系数 int exp; // 指数 Node* next; Node(int c = 0, int e = 0, Node* n = nullptr) : coef(c), exp(e), next(n) {} }; void addPoly(Node* a, Node* b) { Node* head = new Node(); // 结果链表的头结点 Node* tail = head; // 结果链表的尾结点 while (a != nullptr && b != nullptr) { if (a->exp < b->exp) { tail->next = new Node(a->coef, a->exp); a = a->next; } else if (a->exp > b->exp) { tail->next = new Node(b->coef, b->exp); b = b->next; } else { int coefSum = a->coef + b->coef; if (coefSum != 0) { tail->next = new Node(coefSum, a->exp); } a = a->next; b = b->next; } tail = tail->next; } // 将剩余的结点插入到结果链表中 while (a != nullptr) { tail->next = new Node(a->coef, a->exp); a = a->next; tail = tail->next; } while (b != nullptr) { tail->next = new Node(b->coef, b->exp); b = b->next; tail = tail->next; } // 输出结果链表 Node* p = head->next; while (p != nullptr) { cout << p->coef << "x^" << p->exp << " + "; p = p->next; } cout << "0" << endl; } int main() { // 构造两个多项式:a = 3x^2 + 2x + 1,b = 4x^3 + 2x^2 + 5 Node* a = new Node(3, 2, new Node(2, 1, new Node(1, 0))); Node* b = new Node(4, 3, new Node(2, 2, new Node(5, 0))); addPoly(a, b); // 输出结果:4x^3 + 5x^2 + 2x + 1 return 0; } ```

相关推荐

#include<stdio.h> #include<stdlib.h> // 定义多项式结构体 typedef struct Polynomial{ int coef; // 系数 int expn; // 指数 struct Polynomial *next; // 指向下一项的指针 }Polynomial; // 创建多项式 Polynomial* createPoly(){ Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 int n; // 项数 printf("请输入多项式项数:"); scanf("%d", &n); for(int i=0; i<n; i++){ Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); // 新建节点 printf("请输入第%d项的系数和指数:", i+1); scanf("%d%d", &node->coef, &node->expn); node->next = NULL; p->next = node; // 将新节点插入到链表尾部 p = node; } return head; } // 显示多项式 void displayPoly(Polynomial *poly){ Polynomial *p = poly->next; // 指针p指向第一个节点 while(p){ printf("%dX^%d", p->coef, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } // 多项式相加 Polynomial* addPoly(Polynomial *poly1, Polynomial *poly2){ Polynomial *p1 = poly1->next; // 指针p1指向第一个节点 Polynomial *p2 = poly2->next; // 指针p2指向第一个节点 Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 while(p1 && p2){ if(p1->expn == p2->expn){ // 指数相等,系数相加 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef + p2->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; p2 = p2->next; } else if(p1->expn > p2->expn){ // 第一个多项式指数大于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } else{ // 第一个多项式指数小于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } } while(p1){ // 第一个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } while(p2){ // 第二个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } return head; } int main(){ printf("请输入第一个多项式:\n"); Polynomial *poly1 = createPoly(); // 创建第一个多项式 printf("第一个多项式为:"); displayPoly(poly1); // 显示第一个多项式 printf("请输入第二个多项式:\n"); Polynomial *poly2 = createPoly(); // 创建第二个多项式 printf("第二个多项式为:"); displayPoly(poly2); // 显示第二个多项式 Polynomial *result = addPoly(poly1, poly2); // 两个多项式相加 printf("两个多项式相加后的结果为:"); displayPoly(result); // 显示相加后的结果 return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode { int coef; // 系数 int expon; // 指数 Polynomial next; // 指向下一个节点的指针 }; Polynomial ReadPoly(); // 读入多项式 Polynomial Add(Polynomial P1, Polynomial P2); // 多项式相加 void PrintPoly(Polynomial P); // 输出多项式 int main() { Polynomial P1, P2, PS; // 读入两个多项式 P1 = ReadPoly(); P2 = ReadPoly(); // 计算多项式相加 PS = Add(P1, P2); // 输出相加的结果 PrintPoly(PS); return 0; } Polynomial ReadPoly() { Polynomial P, Rear, t; int c, e; // 初始化多项式头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->next = NULL; Rear = P; // 读入每一项 scanf("%d %d", &c, &e); while (c != 0 || e != 0) { t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = NULL; Rear->next = t; Rear = t; scanf("%d %d", &c, &e); } return P; } Polynomial Add(Polynomial P1, Polynomial P2) { Polynomial t1, t2, Rear, t; int sum; // 初始化结果多项式头节点 t1 = P1->next; t2 = P2->next; t = (Polynomial)malloc(sizeof(struct PolyNode)); t->next = NULL; Rear = t; // 对两个多项式进行相加 while (t1 && t2) { if (t1->expon > t2->expon) { Rear->next = t1; Rear = t1; t1 = t1->next; } else if (t1->expon < t2->expon) { Rear->next = t2; Rear = t2; t2 = t2->next; } else { sum = t1->coef + t2->coef; if (sum != 0) { t->coef = sum; t->expon = t1->expon; Rear->next = t; Rear = t; } t1 = t1->next; t2 = t2->next; } } // 将未处理完的节点接到结果多项式的末尾 for (; t1; t1 = t1->next) { Rear->next = t1; Rear = t1; } for (; t2; t2 = t2->next) { Rear->next = t2; Rear = t2; } // 删除结果多项式头节点 Rear = t; t = t->next; free(Rear); return t; } void PrintPoly(Polynomial P) { if (!P) { printf("0 0\n"); return; } while (P) { printf("%d %d", P->coef, P->expon); P = P->next; if (P) { printf(" "); } else { printf("\n"); } } }
好的,我可以为您解答一元多项式的加法运算的问题。 在一元多项式的加法运算中,我们需要考虑两个多项式的相加。我们可以先定义一个表示多项式的结构体,例如: c++ struct Polynomial { int coef; // 系数 int exp; // 指数 Polynomial *next; // 指向下一项的指针 }; 然后,我们可以定义一个函数来实现多项式的加法运算,例如: c++ Polynomial* add(Polynomial *p1, Polynomial *p2) { Polynomial *head = new Polynomial; // 定义一个头结点 head->next = NULL; Polynomial *tail = head; // 定义一个尾指针 while (p1 && p2) { // 当p1和p2都不为空时 if (p1->exp > p2->exp) { // 如果p1的指数大于p2的指数 tail->next = p1; // 将p1添加到结果中 tail = p1; p1 = p1->next; } else if (p1->exp < p2->exp) { // 如果p1的指数小于p2的指数 tail->next = p2; // 将p2添加到结果中 tail = p2; p2 = p2->next; } else { // 如果p1和p2的指数相等 int sum = p1->coef + p2->coef; if (sum != 0) { // 如果系数之和不为0 Polynomial *tmp = new Polynomial; // 创建一个新的结点 tmp->coef = sum; tmp->exp = p1->exp; tail->next = tmp; // 将新结点添加到结果中 tail = tmp; } p1 = p1->next; p2 = p2->next; } } while (p1) { // 如果p1还有剩余项 tail->next = p1; tail = p1; p1 = p1->next; } while (p2) { // 如果p2还有剩余项 tail->next = p2; tail = p2; p2 = p2->next; } Polynomial *result = head->next; delete head; return result; // 返回结果链表 } 这样,我们就可以实现一元多项式的加法运算了。
#include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Node; Node* create_node(int coef, int exp) { Node* p = (Node*)malloc(sizeof(Node)); p->coef = coef; p->exp = exp; p->next = NULL; return p; } Node* create_poly() { Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 int coef, exp; printf("请输入一元多项式的系数和指数(以0,0结束):\n"); scanf("%d,%d", &coef, &exp); while (coef != 0 || exp != 0) { // 以(0,0)作为输入结束 Node* p = create_node(coef, exp); tail->next = p; // 尾节点指向新节点 tail = p; // 尾指针指向新节点 scanf("%d,%d", &coef, &exp); } return head; } void print_poly(Node* head) { Node* p = head->next; while (p) { // 遍历链表 if (p->coef > 0 && p != head->next) { // 系数为正数需要输出“+” printf("+"); } printf("%d", p->coef); // 输出系数 if (p->exp > 1) { // 指数大于1需要输出“x^exp” printf("x^%d", p->exp); } else if (p->exp == 1) { // 指数为1只需要输出“x” printf("x"); } p = p->next; } printf("\n"); } Node* add_poly(Node* poly1, Node* poly2) { Node* head1 = poly1->next; Node* head2 = poly2->next; Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 while (head1 && head2) { // 遍历两个链表 if (head1->exp > head2->exp) { // 如果poly1的指数大于poly2的指数 tail->next = create_node(head1->coef, head1->exp); // 将poly1的节点添加到结果链表中 head1 = head1->next; } else if (head1->exp < head2->exp) { // 如果poly1的指数小于poly2的指数 tail->next = create_node(head2->coef, head2->exp); // 将poly2的节点添加到结果链表中 head2 = head2->next; } else { // 如果poly1的指数等于poly2的指数 int coef = head1->coef + head2->coef; if (coef != 0) { // 系数不为0才添加节点 tail->next = create_node(coef, head1->exp); // 将系数相加后的节点添加到结果链表中 } head1 = head1->next; head2 = head2->next; } tail = tail->next; // 尾指针指向新节点 } // 将剩余的节点添加到结果链表中 while (head1) { tail->next = create_node(head1->coef, head1->exp); head1 = head1->next; tail = tail->next; } while (head2) { tail->next = create_node(head2->coef, head2->exp); head2 = head2->next; tail = tail->next; } return head; } int main() { printf("请输入第一个一元多项式:\n"); Node* poly1 = create_poly(); printf("请输入第二个一元多项式:\n"); Node* poly2 = create_poly(); printf("第一个多项式:"); print_poly(poly1); printf("第二个多项式:"); print_poly(poly2); Node* sum = add_poly(poly1, poly2); printf("多项式相加的结果:"); print_poly(sum); return 0; }
一元多项式可以使用链表来实现运算的数据结构。每个节点表示多项式中的一个项,包含一个系数和一个指数。链表的每个节点按照指数降序排列,方便进行运算。 具体的数据结构可以设计如下: python class Node: def __init__(self, coefficient, exponent): self.coefficient = coefficient # 系数 self.exponent = exponent # 指数 self.next = None # 下一个节点的指针 class Polynomial: def __init__(self): self.head = None # 头节点 def insert_term(self, coefficient, exponent): # 按照指数降序插入节点 new_node = Node(coefficient, exponent) if self.head is None or exponent > self.head.exponent: new_node.next = self.head self.head = new_node else: current = self.head while current.next and current.next.exponent >= exponent: current = current.next new_node.next = current.next current.next = new_node def add(self, polynomial): # 多项式相加 result = Polynomial() current1 = self.head current2 = polynomial.head while current1 and current2: if current1.exponent > current2.exponent: result.insert_term(current1.coefficient, current1.exponent) current1 = current1.next elif current1.exponent < current2.exponent: result.insert_term(current2.coefficient, current2.exponent) current2 = current2.next else: result.insert_term(current1.coefficient + current2.coefficient, current1.exponent) current1 = current1.next current2 = current2.next # 处理剩余的节点 while current1: result.insert_term(current1.coefficient, current1.exponent) current1 = current1.next while current2: result.insert_term(current2.coefficient, current2.exponent) current2 = current2.next return result def multiply(self, polynomial): # 多项式相乘 result = Polynomial() current1 = self.head while current1: current2 = polynomial.head while current2: result.insert_term(current1.coefficient * current2.coefficient, current1.exponent + current2.exponent) current2 = current2.next current1 = current1.next return result def display(self): # 打印多项式 if self.head is None: print("Empty polynomial") else: current = self.head while current: if current.coefficient == 0: current = current.next continue if current.coefficient > 0: print("+", end="") print(current.coefficient, end="") if current.exponent > 0: print("x^" + str(current.exponent), end="") current = current.next print() 使用上述数据结构,可以创建两个多项式对象,进行加法和乘法运算,并输出结果。
表如下: typedef struct node { float coef; // 系数 int expn; // 次数 struct node *next; // 指向下一个节点的指针 } Node, *Polynomial; 其中,Node 表示一个节点,Polynomial 表示一个多项式,即由多个节点组成的链表。链表中每个节点存储一个单项式,由系数 coef 和指数 expn 组成。链表的头节点不存储任何单项式,其 coef 和 expn 值可以随意设置。 下面是一元多项式的加法运算代码: c Polynomial add(Polynomial p1, Polynomial p2) { Polynomial head = (Polynomial) malloc(sizeof(Node)); // 头节点 head->next = NULL; Polynomial tail = head; // 尾节点 while (p1 && p2) { if (p1->expn == p2->expn) { // 指数相同 float sum = p1->coef + p2->coef; if (sum != 0) { // 系数之和不为0 Polynomial temp = (Polynomial) malloc(sizeof(Node)); temp->coef = sum; temp->expn = p1->expn; temp->next = NULL; tail->next = temp; tail = temp; } p1 = p1->next; p2 = p2->next; } else if (p1->expn > p2->expn) { // p1 的指数大于 p2 的指数 Polynomial temp = (Polynomial) malloc(sizeof(Node)); temp->coef = p1->coef; temp->expn = p1->expn; temp->next = NULL; tail->next = temp; tail = temp; p1 = p1->next; } else { // p1 的指数小于 p2 的指数 Polynomial temp = (Polynomial) malloc(sizeof(Node)); temp->coef = p2->coef; temp->expn = p2->expn; temp->next = NULL; tail->next = temp; tail = temp; p2 = p2->next; } } while (p1) { // 将 p1 中剩余的单项式加入结果多项式中 Polynomial temp = (Polynomial) malloc(sizeof(Node)); temp->coef = p1->coef; temp->expn = p1->expn; temp->next = NULL; tail->next = temp; tail = temp; p1 = p1->next; } while (p2) { // 将 p2 中剩余的单项式加入结果多项式中 Polynomial temp = (Polynomial) malloc(sizeof(Node)); temp->coef = p2->coef; temp->expn = p2->expn; temp->next = NULL; tail->next = temp; tail = temp; p2 = p2->next; } return head; } 下面是一元多项式的乘法运算代码: c Polynomial multiply(Polynomial p1, Polynomial p2) { Polynomial head = (Polynomial) malloc(sizeof(Node)); // 头节点 head->next = NULL; while (p1) { Polynomial temp_head = (Polynomial) malloc(sizeof(Node)); // 暂存结果多项式的头节点 temp_head->next = NULL; Polynomial temp_tail = temp_head; // 暂存结果多项式的尾节点 while (p2) { Polynomial temp = (Polynomial) malloc(sizeof(Node)); // 创建新节点 temp->coef = p1->coef * p2->coef; temp->expn = p1->expn + p2->expn; temp->next = NULL; temp_tail->next = temp; // 添加到结果多项式中 temp_tail = temp; p2 = p2->next; } head = add(head, temp_head->next); // 将暂存结果多项式与当前结果多项式相加 p1 = p1->next; } return head; }
数据结构实验一元多项式计算器 CSDN 是一种用于计算一元多项式的工具。CSDN 是中国最大的专业开发者社区和知识分享平台,提供了丰富的技术资源和编程教程,对于实验一元多项式计算器的开发和学习具有很高的参考价值。 一元多项式计算器主要涉及多项式的输入、存储、展示和计算四个方面。数据结构实验中,我们可以使用链表或数组等数据结构来存储多项式的系数和指数,并通过链表节点或数组元素之间的连接关系,实现多项式的输入和存储。同时,通过合理设置多项式的展示格式,可以让用户清晰地了解多项式的结构和细节。 在计算方面,我们可以定义多项式的加法、减法和乘法等基本运算,通过遍历多项式链表或数组,逐项对应计算。为了提高计算的效率,可以使用一些优化的算法,如快速幂算法来加速乘法过程。 在 CSDN 上,有很多优秀的技术博文和开源项目可以参考。我们可以通过搜索关键词“一元多项式计算器”或相关的技术关键词来找到相关的资源。在博文中,作者通常会介绍多项式计算器的实现思路、算法以及代码示例,我们可以学习其中的设计思想和实现方法,并参考其代码进行实践。 总之,数据结构实验一元多项式计算器 CSDN 是一个非常有用的资源平台,通过学习和借鉴其中的优秀博文和开源项目,我们可以更好地理解和掌握一元多项式计算器的设计和实现,在数据结构课程中获得更好的学习成果。
#include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 // 定义一元多项式结构体 typedef struct { float coef; // 系数 int expn; // 指数 } ElemType; typedef struct { ElemType *elem; // 存储空间基地址 int length; // 当前长度 int listsize; // 分配的存储容量 } SqList; // 初始化线性表 void InitList(SqList *L) { L->elem = (ElemType *)malloc(MAXSIZE * sizeof(ElemType)); if (!L->elem) { exit(0); // 存储分配失败 } L->length = 0; L->listsize = MAXSIZE; } // 增加线性表长度 void IncreaseSize(SqList *L, int len) { ElemType *newbase; newbase = (ElemType *)realloc(L->elem, (L->listsize + len) * sizeof(ElemType)); if (!newbase) { exit(0); // 存储分配失败 } L->elem = newbase; L->listsize += len; } // 插入元素 void ListInsert(SqList *L, int i, ElemType e) { if (i < 1 || i > L->length + 1) { // i值不合法 exit(0); } if (L->length >= L->listsize) { // 当前存储空间已满,增加分配 IncreaseSize(L, MAXSIZE); } ElemType *q = &(L->elem[i - 1]); for (ElemType *p = &(L->elem[L->length - 1]); p >= q; --p) { *(p + 1) = *p; } *q = e; ++L->length; } // 一元多项式相加 void AddPolyn(SqList *La, SqList *Lb) { int i = 1, j = 1, k = 0; while (i <= La->length && j <= Lb->length) { if (La->elem[i - 1].expn == Lb->elem[j - 1].expn) { // 指数相等,系数相加 float sum = La->elem[i - 1].coef + Lb->elem[j - 1].coef; if (sum != 0) { ElemType e = {sum, La->elem[i - 1].expn}; ListInsert(La, ++k, e); } ++i; ++j; } else if (La->elem[i - 1].expn < Lb->elem[j - 1].expn) { // 将La中指数较小的赋值给结果多项式 ListInsert(La, ++k, La->elem[i - 1]); ++i; } else { // 将Lb中指数较小的赋值给结果多项式 ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } // 将La或Lb中剩余的元素添加到结果多项式中 while (i <= La->length) { ListInsert(La, ++k, La->elem[i - 1]); ++i; } while (j <= Lb->length) { ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } int main() { SqList La, Lb; InitList(&La); InitList(&Lb); printf("请输入多项式1的系数和指数,以(0,0)作为输入结束:\n"); float coef; int expn; scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&La, La.length + 1, e); scanf("%f,%d", &coef, &expn); } printf("请输入多项式2的系数和指数,以(0,0)作为输入结束:\n"); scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&Lb, Lb.length + 1, e); scanf("%f,%d", &coef, &expn); } AddPolyn(&La, &Lb); printf("多项式相加的结果为:\n"); for (int i = 0; i < La.length; ++i) { printf("%.1fX^%d", La.elem[i].coef, La.elem[i].expn); if (i != La.length - 1) { printf("+"); } } printf("\n"); return 0; }
一元多项式可以用链式存储结构来实现,在这种结构中,每个节点包含两个数据项,一个是多项式的系数,另一个是多项式的指数。链表的头指针指向第一个节点,每个节点的指针指向下一个节点。 对于加法,我们可以从两个多项式的头节点开始,依次对比它们的指数大小,如果相等则将它们的系数相加,否则将指数较小的节点插入到新链表中,继续比较下一个节点。如果遍历完其中一个多项式,则直接将剩余的节点插入到新链表中。 对于减法,我们可以先将第二个多项式的系数取相反数,再按照加法的方式进行计算。 下面是链式存储实现一元多项式的加减运算的代码示例: cpp #include <iostream> using namespace std; // 定义多项式的节点结构体 struct Node { float coef; // 系数 int expo; // 指数 Node* next; // 指向下一个节点的指针 Node(float c, int e): coef(c), expo(e), next(NULL) {} }; // 定义多项式类 class Polynomial { public: Polynomial(): head(NULL) {} ~Polynomial() { clear(); } void clear(); // 清空多项式 void insert(float c, int e); // 插入节点 void add(Polynomial& p); // 加法 void subtract(Polynomial& p); // 减法 void print(); // 输出多项式 private: Node* head; // 头指针 }; void Polynomial::clear() { Node* p = head; while (p) { Node* q = p; p = p->next; delete q; } head = NULL; } void Polynomial::insert(float c, int e) { if (c == 0) return; // 系数为0,不插入节点 Node* p = head; Node* q = NULL; // p的前驱节点 while (p && p->expo > e) { q = p; p = p->next; } if (p && p->expo == e) { p->coef += c; // 指数相同,系数相加 if (p->coef == 0) { // 系数为0,删除节点 if (q) q->next = p->next; else head = p->next; delete p; } } else { // 插入新节点 Node* node = new Node(c, e); if (q) q->next = node; else head = node; node->next = p; } } void Polynomial::add(Polynomial& p) { Node* p1 = head; Node* p2 = p.head; Polynomial result; while (p1 && p2) { if (p1->expo == p2->expo) { result.insert(p1->coef + p2->coef, p1->expo); p1 = p1->next; p2 = p2->next; } else if (p1->expo > p2->expo) { result.insert(p1->coef, p1->expo); p1 = p1->next; } else { result.insert(p2->coef, p2->expo); p2 = p2->next; } } while (p1) { result.insert(p1->coef, p1->expo); p1 = p1->next; } while (p2) { result.insert(p2->coef, p2->expo); p2 = p2->next; } clear(); head = result.head; result.head = NULL; } void Polynomial::subtract(Polynomial& p) { Node* p2 = p.head; while (p2) { p2->coef = -p2->coef; // 取相反数 p2 = p2->next; } add(p); } void Polynomial::print() { Node* p = head; while (p) { cout << p->coef << "x^" << p->expo << " "; p = p->next; } cout << endl; } int main() { Polynomial p1, p2; p1.insert(3, 5); p1.insert(-2, 3); p1.insert(5, 2); p1.insert(4, 0); p2.insert(2, 4); p2.insert(-1, 3); p2.insert(1, 1); p1.print(); p2.print(); p1.add(p2); p1.print(); p1.subtract(p2); p1.print(); return 0; } 输出结果如下: 3x^5 -2x^3 5x^2 4x^0 2x^4 -1x^3 1x^1 3x^5 2x^4 -3x^3 5x^2 1x^1 4x^0 3x^5 -2x^3 5x^2 4x^0
可以使用链表来存储一元多项式。 具体实现步骤如下: 1. 定义一个结构体来表示一项多项式,包括系数和指数两个成员变量。 2. 定义一个链表节点结构体,包括一项多项式和一个指向下一个节点的指针。 3. 定义一个函数来创建一项多项式的链表,输入系数和指数,返回一个链表头指针。 4. 定义一个函数来打印一元多项式。 5. 定义一个函数来实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针。 6. 在主函数中,循环输入一元多项式的系数和指数,直到输入(0,0)为止。然后调用创建链表函数,分别创建两个一元多项式的链表。接着调用加法运算函数,计算并打印结果。 以下是示例代码: c #include <stdio.h> #include <stdlib.h> // 一项多项式结构体 struct PolyTerm { int coef; // 系数 int exp; // 指数 }; // 链表节点结构体 struct Node { struct PolyTerm term; // 一项多项式 struct Node* next; // 下一个节点的指针 }; // 创建一项多项式的链表,输入系数和指数,返回一个链表头指针 struct Node* createPoly(int coef, int exp) { struct Node* head = (struct Node*)malloc(sizeof(struct Node)); head->term.coef = coef; head->term.exp = exp; head->next = NULL; return head; } // 打印一元多项式 void printPoly(struct Node* head) { struct Node* p = head; while (p != NULL) { printf("%d*x^%d", p->term.coef, p->term.exp); p = p->next; if (p != NULL && p->term.coef > 0) { printf("+"); } } printf("\n"); } // 实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针 struct Node* addPoly(struct Node* head1, struct Node* head2) { struct Node* p1 = head1; struct Node* p2 = head2; struct Node* head3 = (struct Node*)malloc(sizeof(struct Node)); struct Node* p3 = head3; while (p1 != NULL && p2 != NULL) { if (p1->term.exp > p2->term.exp) { p3->term = p1->term; p1 = p1->next; } else if (p1->term.exp < p2->term.exp) { p3->term = p2->term; p2 = p2->next; } else { p3->term.coef = p1->term.coef + p2->term.coef; if (p3->term.coef != 0) { p3->term.exp = p1->term.exp; p1 = p1->next; p2 = p2->next; } else { p1 = p1->next; p2 = p2->next; continue; } } p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p1 != NULL) { p3->term = p1->term; p1 = p1->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p2 != NULL) { p3->term = p2->term; p2 = p2->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } p3 = head3; head3 = head3->next; free(p3); return head3; } int main() { struct Node* head1 = NULL; struct Node* head2 = NULL; struct Node* head3 = NULL; int coef, exp; printf("Input polynomial A:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head1 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head1->next; head1->next = p; } printf("Input polynomial B:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head2 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head2->next; head2->next = p; } printf("Polynomial A: "); printPoly(head1); printf("Polynomial B: "); printPoly(head2); head3 = addPoly(head1, head2); printf("Polynomial A+B: "); printPoly(head3); return 0; }
### 回答1: 一元多项式相加是在数据结构中比较基础的一部分,也是我们在数学中常见的操作。在计算机中,我们通常将多项式看作一个数组(或链表)的形式,其中数组下标表示该项的指数,数组中存放的值表示该项的系数。两个多项式相加就是将两个数组对应项的系数相加得到一个新的数组。 具体步骤如下: 1. 定义一个数组(或链表)来存放结果多项式,长度为两个原始多项式中指数最大的项数加1。 2. 遍历两个原始多项式数组(或链表),将对应项的系数相加,赋值给结果数组的对应项。 3. 返回结果数组(或链表)。 当然,在实现过程中还需注意以下几点: 1. 若某个多项式存在系数为0的项,则计算时应该忽略该项,即不将其对应项相加到结果数组中。 2. 当两个原始多项式不等长时,需在系数较短的数组中补0,使其长度与较长数组相等。 3. 若相加的结果系数为0,则结果多项式也应该忽略该项,即不将其加入到结果数组中。 总之,一元多项式的加法并不复杂,只需遍历数组,将对应项的系数相加即可。需要注意的是,在实现过程中考虑越界以及忽略系数为0的项这些问题。 ### 回答2: 一元多项式的运算主要包括加、减、乘和求导等,其中加法是最基本的一种运算。在数据结构中,我们可以用链表来表示一元多项式,在链表中每个结点表示一个单项式,包含系数和指数两个数据项。对于两个一元多项式的相加,则需要对它们的各个单项式进行合并,合并的方法是按照单项式的指数大小进行排序,然后分别将同一指数的单项式的系数相加得到新的单项式,最终得到一个新的一元多项式。 具体实现上,可以通过定义一个新的链表来存储结果,然后使用两个指针分别遍历两个原始的链表,根据两个指针所对应的单项式的指数关系来决定需要将哪个单项式加入到结果链表中。需要注意的是,在遍历的过程中,如果出现同一指数的单项式,则需要将它们的系数相加得到新的单项式,否则直接将单项式插入结果链表中即可。 在实现过程中,可以使用一个小技巧来简化代码,即使用一个哑结点作为结果链表的头结点,这样就可以省略对链表进行空判断的代码。同时,为了提高运算效率,可以对原始链表进行排序,使得它们的单项式按照指数大小排列,从而便于遍历和合并。 综上所述,一元多项式的相加需要按照单项式的指数大小进行排序,然后遍历两个原始链表,合并同一指数的单项式并插入结果链表中,最终得到一个新的一元多项式。具体实现需要考虑空链表和排序等细节问题。 ### 回答3: 一元多项式相加是数据结构中的一个重要问题。我们需要定义一个多项式的结构体,同时考虑到指数可能不是连续的整数,我们需要使用链表来保存每一项的系数和指数。具体来说,结构体的定义如下: c typedef struct node { int coefficient; // 系数 int exponent; // 指数 struct node* next; // 下一项 } polynomial; 接下来,我们可以先将两个多项式按指数从小到大排序,然后使用“归并”算法将它们相加。具体来说,分别遍历两个多项式的链表,按指数大小比较,将系数较小的项插入结果链表,并且修改指针。最后,如果有多余项,直接将它们接在结果链表的末尾即可。 具体实现如下: c polynomial* add(polynomial* p1, polynomial* p2) { polynomial* result = (polynomial*)malloc(sizeof(polynomial)); polynomial* cur = result; while (p1 && p2) { if (p1->exponent < p2->exponent) { cur->next = p1; p1 = p1->next; } else if (p1->exponent > p2->exponent) { cur->next = p2; p2 = p2->next; } else { cur->next = p1; cur->next->coefficient += p2->coefficient; p1 = p1->next; p2 = p2->next; } cur = cur->next; } cur->next = p1 ? p1 : p2; return result->next; } 最后,记得要释放内存。

最新推荐

使用c或C++一元稀疏多项式的加法运算

设计一个实现一元稀疏多项式相加运算的演示程序: (1)输入并建立两个多项式; (2)多项式a与b相加,建立和多项式c; (3)输出多项式a,b,c。输出格式:比如多项式a为:A(x)=c1xe1+ c2xe2+…+ cmxem,其中,ci和...

chromedriver_win32_2.26.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

2021竞赛题目列表(高职高专).xlsx.zip

2021竞赛题目列表(高职高专).xlsx

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C