编程实现一元多项式的加法运算。第一个一元多项式A; 第二个一元多项式B。 以(0,0)作为输入结束。多项式A和多项式B的和。数据结构

时间: 2023-05-29 21:06:02 浏览: 27
可以使用链表来存储一元多项式。 具体实现步骤如下: 1. 定义一个结构体来表示一项多项式,包括系数和指数两个成员变量。 2. 定义一个链表节点结构体,包括一项多项式和一个指向下一个节点的指针。 3. 定义一个函数来创建一项多项式的链表,输入系数和指数,返回一个链表头指针。 4. 定义一个函数来打印一元多项式。 5. 定义一个函数来实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针。 6. 在主函数中,循环输入一元多项式的系数和指数,直到输入(0,0)为止。然后调用创建链表函数,分别创建两个一元多项式的链表。接着调用加法运算函数,计算并打印结果。 以下是示例代码: ```c #include <stdio.h> #include <stdlib.h> // 一项多项式结构体 struct PolyTerm { int coef; // 系数 int exp; // 指数 }; // 链表节点结构体 struct Node { struct PolyTerm term; // 一项多项式 struct Node* next; // 下一个节点的指针 }; // 创建一项多项式的链表,输入系数和指数,返回一个链表头指针 struct Node* createPoly(int coef, int exp) { struct Node* head = (struct Node*)malloc(sizeof(struct Node)); head->term.coef = coef; head->term.exp = exp; head->next = NULL; return head; } // 打印一元多项式 void printPoly(struct Node* head) { struct Node* p = head; while (p != NULL) { printf("%d*x^%d", p->term.coef, p->term.exp); p = p->next; if (p != NULL && p->term.coef > 0) { printf("+"); } } printf("\n"); } // 实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针 struct Node* addPoly(struct Node* head1, struct Node* head2) { struct Node* p1 = head1; struct Node* p2 = head2; struct Node* head3 = (struct Node*)malloc(sizeof(struct Node)); struct Node* p3 = head3; while (p1 != NULL && p2 != NULL) { if (p1->term.exp > p2->term.exp) { p3->term = p1->term; p1 = p1->next; } else if (p1->term.exp < p2->term.exp) { p3->term = p2->term; p2 = p2->next; } else { p3->term.coef = p1->term.coef + p2->term.coef; if (p3->term.coef != 0) { p3->term.exp = p1->term.exp; p1 = p1->next; p2 = p2->next; } else { p1 = p1->next; p2 = p2->next; continue; } } p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p1 != NULL) { p3->term = p1->term; p1 = p1->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p2 != NULL) { p3->term = p2->term; p2 = p2->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } p3 = head3; head3 = head3->next; free(p3); return head3; } int main() { struct Node* head1 = NULL; struct Node* head2 = NULL; struct Node* head3 = NULL; int coef, exp; printf("Input polynomial A:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head1 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head1->next; head1->next = p; } printf("Input polynomial B:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head2 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head2->next; head2->next = p; } printf("Polynomial A: "); printPoly(head1); printf("Polynomial B: "); printPoly(head2); head3 = addPoly(head1, head2); printf("Polynomial A+B: "); printPoly(head3); return 0; } ```

相关推荐

#include <stdio.h> #define MAX_TERMS 100 typedef struct { float coef; // 系数 int exp; // 指数 } Term; void input_poly(Term poly[]); void add_poly(const Term poly1[], const Term poly2[], Term result[]); void print_poly(const Term poly[]); int main() { Term poly1[MAX_TERMS], poly2[MAX_TERMS], result[MAX_TERMS]; printf("请输入第一个多项式:\n"); input_poly(poly1); printf("请输入第二个多项式:\n"); input_poly(poly2); add_poly(poly1, poly2, result); printf("两个多项式相加的结果为:\n"); print_poly(result); return 0; } void input_poly(Term poly[]) { int i = 0; while (1) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &poly[i].coef, &poly[i].exp); if (poly[i].coef == 0 && poly[i].exp == 0) { break; } i++; } } void add_poly(const Term poly1[], const Term poly2[], Term result[]) { int i = 0, j = 0, k = 0; while (poly1[i].coef != 0 || poly1[i].exp != 0 || poly2[j].coef != 0 || poly2[j].exp != 0) { if (poly1[i].exp > poly2[j].exp) { result[k] = poly1[i]; i++; } else if (poly1[i].exp < poly2[j].exp) { result[k] = poly2[j]; j++; } else { result[k].coef = poly1[i].coef + poly2[j].coef; result[k].exp = poly1[i].exp; i++; j++; } k++; } result[k].coef = 0; result[k].exp = 0; } void print_poly(const Term poly[]) { int i = 0; while (poly[i].coef != 0 || poly[i].exp != 0) { if (i > 0 && poly[i].coef > 0) { printf("+"); } if (poly[i].coef != 1 && poly[i].coef != -1) { printf("%.2f", poly[i].coef); } else if (poly[i].coef == -1) { printf("-"); } if (poly[i].exp == 0) { printf("%.2f", poly[i].coef); } else if (poly[i].exp == 1) { printf("x"); } else { printf("x^%d", poly[i].exp); } i++; } printf("\n"); }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode { int coef; // 系数 int expon; // 指数 Polynomial next; // 指向下一个节点的指针 }; Polynomial ReadPoly(); // 读入多项式 Polynomial Add(Polynomial P1, Polynomial P2); // 多项式相加 void PrintPoly(Polynomial P); // 输出多项式 int main() { Polynomial P1, P2, PS; // 读入两个多项式 P1 = ReadPoly(); P2 = ReadPoly(); // 计算多项式相加 PS = Add(P1, P2); // 输出相加的结果 PrintPoly(PS); return 0; } Polynomial ReadPoly() { Polynomial P, Rear, t; int c, e; // 初始化多项式头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->next = NULL; Rear = P; // 读入每一项 scanf("%d %d", &c, &e); while (c != 0 || e != 0) { t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = NULL; Rear->next = t; Rear = t; scanf("%d %d", &c, &e); } return P; } Polynomial Add(Polynomial P1, Polynomial P2) { Polynomial t1, t2, Rear, t; int sum; // 初始化结果多项式头节点 t1 = P1->next; t2 = P2->next; t = (Polynomial)malloc(sizeof(struct PolyNode)); t->next = NULL; Rear = t; // 对两个多项式进行相加 while (t1 && t2) { if (t1->expon > t2->expon) { Rear->next = t1; Rear = t1; t1 = t1->next; } else if (t1->expon < t2->expon) { Rear->next = t2; Rear = t2; t2 = t2->next; } else { sum = t1->coef + t2->coef; if (sum != 0) { t->coef = sum; t->expon = t1->expon; Rear->next = t; Rear = t; } t1 = t1->next; t2 = t2->next; } } // 将未处理完的节点接到结果多项式的末尾 for (; t1; t1 = t1->next) { Rear->next = t1; Rear = t1; } for (; t2; t2 = t2->next) { Rear->next = t2; Rear = t2; } // 删除结果多项式头节点 Rear = t; t = t->next; free(Rear); return t; } void PrintPoly(Polynomial P) { if (!P) { printf("0 0\n"); return; } while (P) { printf("%d %d", P->coef, P->expon); P = P->next; if (P) { printf(" "); } else { printf("\n"); } } }
以下是一元多项式加法运算的C语言代码: #include <stdio.h> #include <stdlib.h> #define MAX_TERM 100 // 多项式的最大项数 typedef struct { float coef; // 系数 int expn; // 指数 } term; typedef struct { term data[MAX_TERM]; int len; } polynomial; void create_polynomial(polynomial *p) { // 创建多项式 printf("请输入多项式的项数:"); scanf("%d", &p->len); for (int i = 0; i < p->len; ++i) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &p->data[i].coef, &p->data[i].expn); } } void print_polynomial(polynomial p) { // 输出多项式 for (int i = 0; i < p.len; ++i) { if (p.data[i].coef > 0 && i > 0) { printf("+"); } printf("%.2fx^%d", p.data[i].coef, p.data[i].expn); } printf("\n"); } polynomial add_polynomial(polynomial p1, polynomial p2) { // 多项式加法 polynomial result = {0}; int i = 0, j = 0, k = 0; while (i < p1.len && j < p2.len) { if (p1.data[i].expn > p2.data[j].expn) { result.data[k++] = p1.data[i++]; } else if (p1.data[i].expn < p2.data[j].expn) { result.data[k++] = p2.data[j++]; } else { float sum = p1.data[i].coef + p2.data[j].coef; if (sum != 0) { result.data[k].coef = sum; result.data[k++].expn = p1.data[i].expn; } ++i; ++j; } } while (i < p1.len) { result.data[k++] = p1.data[i++]; } while (j < p2.len) { result.data[k++] = p2.data[j++]; } result.len = k; return result; } int main() { polynomial p1 = {0}, p2 = {0}, result = {0}; printf("请输入第一个多项式:\n"); create_polynomial(&p1); printf("请输入第二个多项式:\n"); create_polynomial(&p2); printf("第一个多项式为:"); print_polynomial(p1); printf("第二个多项式为:"); print_polynomial(p2); result = add_polynomial(p1, p2); printf("两个多项式相加的结果为:"); print_polynomial(result); return 0; } 在代码中,我们首先定义了一个term结构体表示多项式的一项,其中包括系数和指数两个成员变量。然后定义了一个polynomial结构体表示多项式,其中包括一个term类型的数组和一个表示多项式长度的len变量。 接着,我们实现了三个函数:create_polynomial用于创建多项式,print_polynomial用于输出多项式,add_polynomial用于实现多项式加法。 在main函数中,我们先分别创建了两个多项式p1和p2,然后输出它们,再调用add_polynomial函数求出它们的和result,并输出结果。
#include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Node; Node* create_node(int coef, int exp) { Node* p = (Node*)malloc(sizeof(Node)); p->coef = coef; p->exp = exp; p->next = NULL; return p; } Node* create_poly() { Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 int coef, exp; printf("请输入一元多项式的系数和指数(以0,0结束):\n"); scanf("%d,%d", &coef, &exp); while (coef != 0 || exp != 0) { // 以(0,0)作为输入结束 Node* p = create_node(coef, exp); tail->next = p; // 尾节点指向新节点 tail = p; // 尾指针指向新节点 scanf("%d,%d", &coef, &exp); } return head; } void print_poly(Node* head) { Node* p = head->next; while (p) { // 遍历链表 if (p->coef > 0 && p != head->next) { // 系数为正数需要输出“+” printf("+"); } printf("%d", p->coef); // 输出系数 if (p->exp > 1) { // 指数大于1需要输出“x^exp” printf("x^%d", p->exp); } else if (p->exp == 1) { // 指数为1只需要输出“x” printf("x"); } p = p->next; } printf("\n"); } Node* add_poly(Node* poly1, Node* poly2) { Node* head1 = poly1->next; Node* head2 = poly2->next; Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 while (head1 && head2) { // 遍历两个链表 if (head1->exp > head2->exp) { // 如果poly1的指数大于poly2的指数 tail->next = create_node(head1->coef, head1->exp); // 将poly1的节点添加到结果链表中 head1 = head1->next; } else if (head1->exp < head2->exp) { // 如果poly1的指数小于poly2的指数 tail->next = create_node(head2->coef, head2->exp); // 将poly2的节点添加到结果链表中 head2 = head2->next; } else { // 如果poly1的指数等于poly2的指数 int coef = head1->coef + head2->coef; if (coef != 0) { // 系数不为0才添加节点 tail->next = create_node(coef, head1->exp); // 将系数相加后的节点添加到结果链表中 } head1 = head1->next; head2 = head2->next; } tail = tail->next; // 尾指针指向新节点 } // 将剩余的节点添加到结果链表中 while (head1) { tail->next = create_node(head1->coef, head1->exp); head1 = head1->next; tail = tail->next; } while (head2) { tail->next = create_node(head2->coef, head2->exp); head2 = head2->next; tail = tail->next; } return head; } int main() { printf("请输入第一个一元多项式:\n"); Node* poly1 = create_poly(); printf("请输入第二个一元多项式:\n"); Node* poly2 = create_poly(); printf("第一个多项式:"); print_poly(poly1); printf("第二个多项式:"); print_poly(poly2); Node* sum = add_poly(poly1, poly2); printf("多项式相加的结果:"); print_poly(sum); return 0; }
#include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 // 定义一元多项式结构体 typedef struct { float coef; // 系数 int expn; // 指数 } ElemType; typedef struct { ElemType *elem; // 存储空间基地址 int length; // 当前长度 int listsize; // 分配的存储容量 } SqList; // 初始化线性表 void InitList(SqList *L) { L->elem = (ElemType *)malloc(MAXSIZE * sizeof(ElemType)); if (!L->elem) { exit(0); // 存储分配失败 } L->length = 0; L->listsize = MAXSIZE; } // 增加线性表长度 void IncreaseSize(SqList *L, int len) { ElemType *newbase; newbase = (ElemType *)realloc(L->elem, (L->listsize + len) * sizeof(ElemType)); if (!newbase) { exit(0); // 存储分配失败 } L->elem = newbase; L->listsize += len; } // 插入元素 void ListInsert(SqList *L, int i, ElemType e) { if (i < 1 || i > L->length + 1) { // i值不合法 exit(0); } if (L->length >= L->listsize) { // 当前存储空间已满,增加分配 IncreaseSize(L, MAXSIZE); } ElemType *q = &(L->elem[i - 1]); for (ElemType *p = &(L->elem[L->length - 1]); p >= q; --p) { *(p + 1) = *p; } *q = e; ++L->length; } // 一元多项式相加 void AddPolyn(SqList *La, SqList *Lb) { int i = 1, j = 1, k = 0; while (i <= La->length && j <= Lb->length) { if (La->elem[i - 1].expn == Lb->elem[j - 1].expn) { // 指数相等,系数相加 float sum = La->elem[i - 1].coef + Lb->elem[j - 1].coef; if (sum != 0) { ElemType e = {sum, La->elem[i - 1].expn}; ListInsert(La, ++k, e); } ++i; ++j; } else if (La->elem[i - 1].expn < Lb->elem[j - 1].expn) { // 将La中指数较小的赋值给结果多项式 ListInsert(La, ++k, La->elem[i - 1]); ++i; } else { // 将Lb中指数较小的赋值给结果多项式 ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } // 将La或Lb中剩余的元素添加到结果多项式中 while (i <= La->length) { ListInsert(La, ++k, La->elem[i - 1]); ++i; } while (j <= Lb->length) { ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } int main() { SqList La, Lb; InitList(&La); InitList(&Lb); printf("请输入多项式1的系数和指数,以(0,0)作为输入结束:\n"); float coef; int expn; scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&La, La.length + 1, e); scanf("%f,%d", &coef, &expn); } printf("请输入多项式2的系数和指数,以(0,0)作为输入结束:\n"); scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&Lb, Lb.length + 1, e); scanf("%f,%d", &coef, &expn); } AddPolyn(&La, &Lb); printf("多项式相加的结果为:\n"); for (int i = 0; i < La.length; ++i) { printf("%.1fX^%d", La.elem[i].coef, La.elem[i].expn); if (i != La.length - 1) { printf("+"); } } printf("\n"); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }
一元多项式可以用链表来实现,每个节点表示一个项,包含系数和指数两个成员变量。加法运算就是将两个链表按照指数从小到大的顺序依次合并,如果两个节点的指数相同,则将它们的系数相加,否则将指数小的节点插入到结果链表中。 以下是 C++ 实现代码: c++ #include <iostream> using namespace std; struct Node { int coef; // 系数 int exp; // 指数 Node* next; Node(int c = 0, int e = 0, Node* n = nullptr) : coef(c), exp(e), next(n) {} }; void addPoly(Node* a, Node* b) { Node* head = new Node(); // 结果链表的头结点 Node* tail = head; // 结果链表的尾结点 while (a != nullptr && b != nullptr) { if (a->exp < b->exp) { tail->next = new Node(a->coef, a->exp); a = a->next; } else if (a->exp > b->exp) { tail->next = new Node(b->coef, b->exp); b = b->next; } else { int coefSum = a->coef + b->coef; if (coefSum != 0) { tail->next = new Node(coefSum, a->exp); } a = a->next; b = b->next; } tail = tail->next; } // 将剩余的结点插入到结果链表中 while (a != nullptr) { tail->next = new Node(a->coef, a->exp); a = a->next; tail = tail->next; } while (b != nullptr) { tail->next = new Node(b->coef, b->exp); b = b->next; tail = tail->next; } // 输出结果链表 Node* p = head->next; while (p != nullptr) { cout << p->coef << "x^" << p->exp << " + "; p = p->next; } cout << "0" << endl; } int main() { // 构造两个多项式:a = 3x^2 + 2x + 1,b = 4x^3 + 2x^2 + 5 Node* a = new Node(3, 2, new Node(2, 1, new Node(1, 0))); Node* b = new Node(4, 3, new Node(2, 2, new Node(5, 0))); addPoly(a, b); // 输出结果:4x^3 + 5x^2 + 2x + 1 return 0; }
#include <stdio.h> #include <stdlib.h> struct node { int coef; // 系数 int exp; // 指数 struct node *next; // 下一个节点指针 }; typedef struct node Node; typedef Node *NodePtr; // 创建一个新节点 NodePtr createNode(int coef, int exp) { NodePtr node = (NodePtr) malloc(sizeof(Node)); node->coef = coef; node->exp = exp; node->next = NULL; return node; } // 插入一个节点到多项式中 void insertNode(NodePtr *head, NodePtr node) { if (*head == NULL) { *head = node; } else { NodePtr cur = *head; while (cur->next != NULL) { cur = cur->next; } cur->next = node; } } // 打印多项式 void printList(NodePtr head) { while (head != NULL) { printf("%dx^%d", head->coef, head->exp); if (head->next != NULL) { printf(" + "); } head = head->next; } printf("\n"); } // 释放多项式的所有节点 void freeList(NodePtr head) { NodePtr cur = head; while (head != NULL) { cur = head; head = head->next; free(cur); } } // 一元多项式加法运算 NodePtr add(NodePtr p1, NodePtr p2) { NodePtr head = NULL; while (p1 != NULL && p2 != NULL) { if (p1->exp == p2->exp) { // 指数相同,系数相加 int coef = p1->coef + p2->coef; if (coef != 0) { // 如果系数不为0,插入新节点 insertNode(&head, createNode(coef, p1->exp)); } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { // p1的指数更大,插入p1的节点 insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } else { // p2的指数更大,插入p2的节点 insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } } // 处理剩余节点 while (p1 != NULL) { insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } while (p2 != NULL) { insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } return head; } int main() { // 多项式1: 3x^3 + 2x^2 + x^0 NodePtr p1 = createNode(3, 3); insertNode(&p1, createNode(2, 2)); insertNode(&p1, createNode(1, 0)); printf("p1 = "); printList(p1); // 多项式2: 4x^4 + 2x^2 + 1x^0 NodePtr p2 = createNode(4, 4); insertNode(&p2, createNode(2, 2)); insertNode(&p2, createNode(1, 0)); printf("p2 = "); printList(p2); // 多项式加法 NodePtr p3 = add(p1, p2); printf("p3 = "); printList(p3); // 释放内存 freeList(p1); freeList(p2); freeList(p3); return 0; }

最新推荐

单链表的修改操作代码.md

单链表的修改操作代码

卷积神经网络动画-所有的卷积神经网络动画都是错的

所有的卷积神经网络动画都是错的

Python仿真区块链,适合毕业设计项目或课题研究。汇智网提供.zip

Python仿真区块链,适合毕业设计项目或课题研究。汇智网提供

基于MySQL的应用程序设计.docx

基于MySQL的应用程序设计.docx

百度电影推荐比赛参赛:评分预测问题.zip

比赛项目源码

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�