编程实现一元多项式的加法运算。第一个一元多项式A;第二个多项式B。以(0,0作为输入结束)。C++

时间: 2023-05-15 16:06:58 浏览: 30
知道: 以下是一元多项式的加法运算的代码实现,其中A和B分别代表两个多项式: #include <iostream> #include <vector> using namespace std; struct Poly { int coef; // 系数 int exp; // 指数 }; vector<Poly> addPoly(vector<Poly> A, vector<Poly> B) { vector<Poly> C; int i = 0, j = 0; while (i < A.size() && j < B.size()) { if (A[i].exp > B[j].exp) { C.push_back(A[i]); i++; } else if (A[i].exp < B[j].exp) { C.push_back(B[j]); j++; } else { int sum = A[i].coef + B[j].coef; if (sum != 0) { Poly tmp; tmp.coef = sum; tmp.exp = A[i].exp; C.push_back(tmp); } i++; j++; } } while (i < A.size()) { C.push_back(A[i]); i++; } while (j < B.size()) { C.push_back(B[j]); j++; } return C; } int main() { vector<Poly> A, B; Poly tmp; cout << "请输入多项式A的系数和指数:" << endl; while (cin >> tmp.coef >> tmp.exp) { if (tmp.coef == 0 && tmp.exp == 0) break; A.push_back(tmp); } cout << "请输入多项式B的系数和指数:" << endl; while (cin >> tmp.coef >> tmp.exp) { if (tmp.coef == 0 && tmp.exp == 0) break; B.push_back(tmp); } vector<Poly> C = addPoly(A, B); cout << "多项式A + 多项式B = "; for (int i = 0; i < C.size(); i++) { cout << C[i].coef << "x^" << C[i].exp; if (i != C.size() - 1) cout << " + "; } cout << endl; return 0; } 希望这个代码能够帮到你!

相关推荐

#include <stdio.h> #define MAX_TERMS 100 typedef struct { float coef; // 系数 int exp; // 指数 } Term; void input_poly(Term poly[]); void add_poly(const Term poly1[], const Term poly2[], Term result[]); void print_poly(const Term poly[]); int main() { Term poly1[MAX_TERMS], poly2[MAX_TERMS], result[MAX_TERMS]; printf("请输入第一个多项式:\n"); input_poly(poly1); printf("请输入第二个多项式:\n"); input_poly(poly2); add_poly(poly1, poly2, result); printf("两个多项式相加的结果为:\n"); print_poly(result); return 0; } void input_poly(Term poly[]) { int i = 0; while (1) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &poly[i].coef, &poly[i].exp); if (poly[i].coef == 0 && poly[i].exp == 0) { break; } i++; } } void add_poly(const Term poly1[], const Term poly2[], Term result[]) { int i = 0, j = 0, k = 0; while (poly1[i].coef != 0 || poly1[i].exp != 0 || poly2[j].coef != 0 || poly2[j].exp != 0) { if (poly1[i].exp > poly2[j].exp) { result[k] = poly1[i]; i++; } else if (poly1[i].exp < poly2[j].exp) { result[k] = poly2[j]; j++; } else { result[k].coef = poly1[i].coef + poly2[j].coef; result[k].exp = poly1[i].exp; i++; j++; } k++; } result[k].coef = 0; result[k].exp = 0; } void print_poly(const Term poly[]) { int i = 0; while (poly[i].coef != 0 || poly[i].exp != 0) { if (i > 0 && poly[i].coef > 0) { printf("+"); } if (poly[i].coef != 1 && poly[i].coef != -1) { printf("%.2f", poly[i].coef); } else if (poly[i].coef == -1) { printf("-"); } if (poly[i].exp == 0) { printf("%.2f", poly[i].coef); } else if (poly[i].exp == 1) { printf("x"); } else { printf("x^%d", poly[i].exp); } i++; } printf("\n"); }
可以使用链表来存储一元多项式。 具体实现步骤如下: 1. 定义一个结构体来表示一项多项式,包括系数和指数两个成员变量。 2. 定义一个链表节点结构体,包括一项多项式和一个指向下一个节点的指针。 3. 定义一个函数来创建一项多项式的链表,输入系数和指数,返回一个链表头指针。 4. 定义一个函数来打印一元多项式。 5. 定义一个函数来实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针。 6. 在主函数中,循环输入一元多项式的系数和指数,直到输入(0,0)为止。然后调用创建链表函数,分别创建两个一元多项式的链表。接着调用加法运算函数,计算并打印结果。 以下是示例代码: c #include <stdio.h> #include <stdlib.h> // 一项多项式结构体 struct PolyTerm { int coef; // 系数 int exp; // 指数 }; // 链表节点结构体 struct Node { struct PolyTerm term; // 一项多项式 struct Node* next; // 下一个节点的指针 }; // 创建一项多项式的链表,输入系数和指数,返回一个链表头指针 struct Node* createPoly(int coef, int exp) { struct Node* head = (struct Node*)malloc(sizeof(struct Node)); head->term.coef = coef; head->term.exp = exp; head->next = NULL; return head; } // 打印一元多项式 void printPoly(struct Node* head) { struct Node* p = head; while (p != NULL) { printf("%d*x^%d", p->term.coef, p->term.exp); p = p->next; if (p != NULL && p->term.coef > 0) { printf("+"); } } printf("\n"); } // 实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针 struct Node* addPoly(struct Node* head1, struct Node* head2) { struct Node* p1 = head1; struct Node* p2 = head2; struct Node* head3 = (struct Node*)malloc(sizeof(struct Node)); struct Node* p3 = head3; while (p1 != NULL && p2 != NULL) { if (p1->term.exp > p2->term.exp) { p3->term = p1->term; p1 = p1->next; } else if (p1->term.exp < p2->term.exp) { p3->term = p2->term; p2 = p2->next; } else { p3->term.coef = p1->term.coef + p2->term.coef; if (p3->term.coef != 0) { p3->term.exp = p1->term.exp; p1 = p1->next; p2 = p2->next; } else { p1 = p1->next; p2 = p2->next; continue; } } p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p1 != NULL) { p3->term = p1->term; p1 = p1->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p2 != NULL) { p3->term = p2->term; p2 = p2->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } p3 = head3; head3 = head3->next; free(p3); return head3; } int main() { struct Node* head1 = NULL; struct Node* head2 = NULL; struct Node* head3 = NULL; int coef, exp; printf("Input polynomial A:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head1 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head1->next; head1->next = p; } printf("Input polynomial B:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head2 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head2->next; head2->next = p; } printf("Polynomial A: "); printPoly(head1); printf("Polynomial B: "); printPoly(head2); head3 = addPoly(head1, head2); printf("Polynomial A+B: "); printPoly(head3); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode { int coef; // 系数 int expon; // 指数 Polynomial next; // 指向下一个节点的指针 }; Polynomial ReadPoly(); // 读入多项式 Polynomial Add(Polynomial P1, Polynomial P2); // 多项式相加 void PrintPoly(Polynomial P); // 输出多项式 int main() { Polynomial P1, P2, PS; // 读入两个多项式 P1 = ReadPoly(); P2 = ReadPoly(); // 计算多项式相加 PS = Add(P1, P2); // 输出相加的结果 PrintPoly(PS); return 0; } Polynomial ReadPoly() { Polynomial P, Rear, t; int c, e; // 初始化多项式头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->next = NULL; Rear = P; // 读入每一项 scanf("%d %d", &c, &e); while (c != 0 || e != 0) { t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = NULL; Rear->next = t; Rear = t; scanf("%d %d", &c, &e); } return P; } Polynomial Add(Polynomial P1, Polynomial P2) { Polynomial t1, t2, Rear, t; int sum; // 初始化结果多项式头节点 t1 = P1->next; t2 = P2->next; t = (Polynomial)malloc(sizeof(struct PolyNode)); t->next = NULL; Rear = t; // 对两个多项式进行相加 while (t1 && t2) { if (t1->expon > t2->expon) { Rear->next = t1; Rear = t1; t1 = t1->next; } else if (t1->expon < t2->expon) { Rear->next = t2; Rear = t2; t2 = t2->next; } else { sum = t1->coef + t2->coef; if (sum != 0) { t->coef = sum; t->expon = t1->expon; Rear->next = t; Rear = t; } t1 = t1->next; t2 = t2->next; } } // 将未处理完的节点接到结果多项式的末尾 for (; t1; t1 = t1->next) { Rear->next = t1; Rear = t1; } for (; t2; t2 = t2->next) { Rear->next = t2; Rear = t2; } // 删除结果多项式头节点 Rear = t; t = t->next; free(Rear); return t; } void PrintPoly(Polynomial P) { if (!P) { printf("0 0\n"); return; } while (P) { printf("%d %d", P->coef, P->expon); P = P->next; if (P) { printf(" "); } else { printf("\n"); } } }
以下是一元多项式加法运算的C语言代码: #include <stdio.h> #include <stdlib.h> #define MAX_TERM 100 // 多项式的最大项数 typedef struct { float coef; // 系数 int expn; // 指数 } term; typedef struct { term data[MAX_TERM]; int len; } polynomial; void create_polynomial(polynomial *p) { // 创建多项式 printf("请输入多项式的项数:"); scanf("%d", &p->len); for (int i = 0; i < p->len; ++i) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &p->data[i].coef, &p->data[i].expn); } } void print_polynomial(polynomial p) { // 输出多项式 for (int i = 0; i < p.len; ++i) { if (p.data[i].coef > 0 && i > 0) { printf("+"); } printf("%.2fx^%d", p.data[i].coef, p.data[i].expn); } printf("\n"); } polynomial add_polynomial(polynomial p1, polynomial p2) { // 多项式加法 polynomial result = {0}; int i = 0, j = 0, k = 0; while (i < p1.len && j < p2.len) { if (p1.data[i].expn > p2.data[j].expn) { result.data[k++] = p1.data[i++]; } else if (p1.data[i].expn < p2.data[j].expn) { result.data[k++] = p2.data[j++]; } else { float sum = p1.data[i].coef + p2.data[j].coef; if (sum != 0) { result.data[k].coef = sum; result.data[k++].expn = p1.data[i].expn; } ++i; ++j; } } while (i < p1.len) { result.data[k++] = p1.data[i++]; } while (j < p2.len) { result.data[k++] = p2.data[j++]; } result.len = k; return result; } int main() { polynomial p1 = {0}, p2 = {0}, result = {0}; printf("请输入第一个多项式:\n"); create_polynomial(&p1); printf("请输入第二个多项式:\n"); create_polynomial(&p2); printf("第一个多项式为:"); print_polynomial(p1); printf("第二个多项式为:"); print_polynomial(p2); result = add_polynomial(p1, p2); printf("两个多项式相加的结果为:"); print_polynomial(result); return 0; } 在代码中,我们首先定义了一个term结构体表示多项式的一项,其中包括系数和指数两个成员变量。然后定义了一个polynomial结构体表示多项式,其中包括一个term类型的数组和一个表示多项式长度的len变量。 接着,我们实现了三个函数:create_polynomial用于创建多项式,print_polynomial用于输出多项式,add_polynomial用于实现多项式加法。 在main函数中,我们先分别创建了两个多项式p1和p2,然后输出它们,再调用add_polynomial函数求出它们的和result,并输出结果。
#include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Node; Node* create_node(int coef, int exp) { Node* p = (Node*)malloc(sizeof(Node)); p->coef = coef; p->exp = exp; p->next = NULL; return p; } Node* create_poly() { Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 int coef, exp; printf("请输入一元多项式的系数和指数(以0,0结束):\n"); scanf("%d,%d", &coef, &exp); while (coef != 0 || exp != 0) { // 以(0,0)作为输入结束 Node* p = create_node(coef, exp); tail->next = p; // 尾节点指向新节点 tail = p; // 尾指针指向新节点 scanf("%d,%d", &coef, &exp); } return head; } void print_poly(Node* head) { Node* p = head->next; while (p) { // 遍历链表 if (p->coef > 0 && p != head->next) { // 系数为正数需要输出“+” printf("+"); } printf("%d", p->coef); // 输出系数 if (p->exp > 1) { // 指数大于1需要输出“x^exp” printf("x^%d", p->exp); } else if (p->exp == 1) { // 指数为1只需要输出“x” printf("x"); } p = p->next; } printf("\n"); } Node* add_poly(Node* poly1, Node* poly2) { Node* head1 = poly1->next; Node* head2 = poly2->next; Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 while (head1 && head2) { // 遍历两个链表 if (head1->exp > head2->exp) { // 如果poly1的指数大于poly2的指数 tail->next = create_node(head1->coef, head1->exp); // 将poly1的节点添加到结果链表中 head1 = head1->next; } else if (head1->exp < head2->exp) { // 如果poly1的指数小于poly2的指数 tail->next = create_node(head2->coef, head2->exp); // 将poly2的节点添加到结果链表中 head2 = head2->next; } else { // 如果poly1的指数等于poly2的指数 int coef = head1->coef + head2->coef; if (coef != 0) { // 系数不为0才添加节点 tail->next = create_node(coef, head1->exp); // 将系数相加后的节点添加到结果链表中 } head1 = head1->next; head2 = head2->next; } tail = tail->next; // 尾指针指向新节点 } // 将剩余的节点添加到结果链表中 while (head1) { tail->next = create_node(head1->coef, head1->exp); head1 = head1->next; tail = tail->next; } while (head2) { tail->next = create_node(head2->coef, head2->exp); head2 = head2->next; tail = tail->next; } return head; } int main() { printf("请输入第一个一元多项式:\n"); Node* poly1 = create_poly(); printf("请输入第二个一元多项式:\n"); Node* poly2 = create_poly(); printf("第一个多项式:"); print_poly(poly1); printf("第二个多项式:"); print_poly(poly2); Node* sum = add_poly(poly1, poly2); printf("多项式相加的结果:"); print_poly(sum); return 0; }
#include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 // 定义一元多项式结构体 typedef struct { float coef; // 系数 int expn; // 指数 } ElemType; typedef struct { ElemType *elem; // 存储空间基地址 int length; // 当前长度 int listsize; // 分配的存储容量 } SqList; // 初始化线性表 void InitList(SqList *L) { L->elem = (ElemType *)malloc(MAXSIZE * sizeof(ElemType)); if (!L->elem) { exit(0); // 存储分配失败 } L->length = 0; L->listsize = MAXSIZE; } // 增加线性表长度 void IncreaseSize(SqList *L, int len) { ElemType *newbase; newbase = (ElemType *)realloc(L->elem, (L->listsize + len) * sizeof(ElemType)); if (!newbase) { exit(0); // 存储分配失败 } L->elem = newbase; L->listsize += len; } // 插入元素 void ListInsert(SqList *L, int i, ElemType e) { if (i < 1 || i > L->length + 1) { // i值不合法 exit(0); } if (L->length >= L->listsize) { // 当前存储空间已满,增加分配 IncreaseSize(L, MAXSIZE); } ElemType *q = &(L->elem[i - 1]); for (ElemType *p = &(L->elem[L->length - 1]); p >= q; --p) { *(p + 1) = *p; } *q = e; ++L->length; } // 一元多项式相加 void AddPolyn(SqList *La, SqList *Lb) { int i = 1, j = 1, k = 0; while (i <= La->length && j <= Lb->length) { if (La->elem[i - 1].expn == Lb->elem[j - 1].expn) { // 指数相等,系数相加 float sum = La->elem[i - 1].coef + Lb->elem[j - 1].coef; if (sum != 0) { ElemType e = {sum, La->elem[i - 1].expn}; ListInsert(La, ++k, e); } ++i; ++j; } else if (La->elem[i - 1].expn < Lb->elem[j - 1].expn) { // 将La中指数较小的赋值给结果多项式 ListInsert(La, ++k, La->elem[i - 1]); ++i; } else { // 将Lb中指数较小的赋值给结果多项式 ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } // 将La或Lb中剩余的元素添加到结果多项式中 while (i <= La->length) { ListInsert(La, ++k, La->elem[i - 1]); ++i; } while (j <= Lb->length) { ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } int main() { SqList La, Lb; InitList(&La); InitList(&Lb); printf("请输入多项式1的系数和指数,以(0,0)作为输入结束:\n"); float coef; int expn; scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&La, La.length + 1, e); scanf("%f,%d", &coef, &expn); } printf("请输入多项式2的系数和指数,以(0,0)作为输入结束:\n"); scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&Lb, Lb.length + 1, e); scanf("%f,%d", &coef, &expn); } AddPolyn(&La, &Lb); printf("多项式相加的结果为:\n"); for (int i = 0; i < La.length; ++i) { printf("%.1fX^%d", La.elem[i].coef, La.elem[i].expn); if (i != La.length - 1) { printf("+"); } } printf("\n"); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }
一元多项式可以用链表来实现,每个节点表示一个项,包含系数和指数两个成员变量。加法运算就是将两个链表按照指数从小到大的顺序依次合并,如果两个节点的指数相同,则将它们的系数相加,否则将指数小的节点插入到结果链表中。 以下是 C++ 实现代码: c++ #include <iostream> using namespace std; struct Node { int coef; // 系数 int exp; // 指数 Node* next; Node(int c = 0, int e = 0, Node* n = nullptr) : coef(c), exp(e), next(n) {} }; void addPoly(Node* a, Node* b) { Node* head = new Node(); // 结果链表的头结点 Node* tail = head; // 结果链表的尾结点 while (a != nullptr && b != nullptr) { if (a->exp < b->exp) { tail->next = new Node(a->coef, a->exp); a = a->next; } else if (a->exp > b->exp) { tail->next = new Node(b->coef, b->exp); b = b->next; } else { int coefSum = a->coef + b->coef; if (coefSum != 0) { tail->next = new Node(coefSum, a->exp); } a = a->next; b = b->next; } tail = tail->next; } // 将剩余的结点插入到结果链表中 while (a != nullptr) { tail->next = new Node(a->coef, a->exp); a = a->next; tail = tail->next; } while (b != nullptr) { tail->next = new Node(b->coef, b->exp); b = b->next; tail = tail->next; } // 输出结果链表 Node* p = head->next; while (p != nullptr) { cout << p->coef << "x^" << p->exp << " + "; p = p->next; } cout << "0" << endl; } int main() { // 构造两个多项式:a = 3x^2 + 2x + 1,b = 4x^3 + 2x^2 + 5 Node* a = new Node(3, 2, new Node(2, 1, new Node(1, 0))); Node* b = new Node(4, 3, new Node(2, 2, new Node(5, 0))); addPoly(a, b); // 输出结果:4x^3 + 5x^2 + 2x + 1 return 0; }
#include<stdio.h> #include<stdlib.h> // 定义多项式结构体 typedef struct Polynomial{ int coef; // 系数 int expn; // 指数 struct Polynomial *next; // 指向下一项的指针 }Polynomial; // 创建多项式 Polynomial* createPoly(){ Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 int n; // 项数 printf("请输入多项式项数:"); scanf("%d", &n); for(int i=0; i<n; i++){ Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); // 新建节点 printf("请输入第%d项的系数和指数:", i+1); scanf("%d%d", &node->coef, &node->expn); node->next = NULL; p->next = node; // 将新节点插入到链表尾部 p = node; } return head; } // 显示多项式 void displayPoly(Polynomial *poly){ Polynomial *p = poly->next; // 指针p指向第一个节点 while(p){ printf("%dX^%d", p->coef, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); } // 多项式相加 Polynomial* addPoly(Polynomial *poly1, Polynomial *poly2){ Polynomial *p1 = poly1->next; // 指针p1指向第一个节点 Polynomial *p2 = poly2->next; // 指针p2指向第一个节点 Polynomial *head = (Polynomial*)malloc(sizeof(Polynomial)); // 头节点 head->next = NULL; Polynomial *p = head; // 指针p指向头节点 while(p1 && p2){ if(p1->expn == p2->expn){ // 指数相等,系数相加 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef + p2->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; p2 = p2->next; } else if(p1->expn > p2->expn){ // 第一个多项式指数大于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } else{ // 第一个多项式指数小于第二个多项式指数 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } } while(p1){ // 第一个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p1->coef; node->expn = p1->expn; node->next = NULL; p->next = node; p = node; p1 = p1->next; } while(p2){ // 第二个多项式还有剩余项 Polynomial *node = (Polynomial*)malloc(sizeof(Polynomial)); node->coef = p2->coef; node->expn = p2->expn; node->next = NULL; p->next = node; p = node; p2 = p2->next; } return head; } int main(){ printf("请输入第一个多项式:\n"); Polynomial *poly1 = createPoly(); // 创建第一个多项式 printf("第一个多项式为:"); displayPoly(poly1); // 显示第一个多项式 printf("请输入第二个多项式:\n"); Polynomial *poly2 = createPoly(); // 创建第二个多项式 printf("第二个多项式为:"); displayPoly(poly2); // 显示第二个多项式 Polynomial *result = addPoly(poly1, poly2); // 两个多项式相加 printf("两个多项式相加后的结果为:"); displayPoly(result); // 显示相加后的结果 return 0; }

最新推荐

电力及公用事业行业月报月第二产业用电量及水电发电量回暖我国国民经济恢复向好-16页.pdf.zip

电力及公用事业、电子设备与新能源类报告 文件类型:PDF 打开方式:直接解压,无需密码

ChatGPT技术在金融领域中的智能客户服务和投资咨询应用场景分析.docx

ChatGPT技术在金融领域中的智能客户服务和投资咨询应用场景分析

py直接运行,2023国家统计局全国省市区县乡镇街道居委会五级区划数据,包括数据库,以及所生成的excel,包括py代码资源

py直接运行,2023国家统计局全国省市区县乡镇街道居委会五级区划数据,包括数据库,以及所生成的excel,包括py代码资源

地产行业周报南京拉开强二线取消限购序幕关注金九银十成色-19页.pdf.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

电力设备及新能源行业周报隆基明确电池技术产业进程有望提速-10页.pdf.zip

电力及公用事业、电子设备与新能源类报告 文件类型:PDF 打开方式:直接解压,无需密码

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�