编程实现一元多项式的加法运算。第一个一元多项式A; 第二个一元多项式B。 以(0,0)作为输入结束。多项式A和多项式B的和。C语言

时间: 2023-05-29 17:05:35 浏览: 46
#include <stdio.h> #define MAX_TERM 100 typedef struct { float coeff; // 系数 int exp; // 指数 } Term; typedef struct { Term termArray[MAX_TERM]; int numTerms; } Polynomial; // 从标准输入读取多项式的项 void readPoly(Polynomial *poly) { int i = 0; float coeff; int exp; printf("输入多项式的系数和指数(输入 0 0 结束):\n"); do { scanf("%f %d", &coeff, &exp); if (coeff == 0 || exp == 0) break; poly->termArray[i].coeff = coeff; poly->termArray[i].exp = exp; i++; } while (i < MAX_TERM); poly->numTerms = i; } // 打印多项式 void printPoly(Polynomial poly) { printf("多项式:\n"); for (int i = 0; i < poly.numTerms; i++) { printf("%.2fx^%d", poly.termArray[i].coeff, poly.termArray[i].exp); if (i < poly.numTerms - 1) printf(" + "); } printf("\n"); } // 一元多项式加法 Polynomial addPoly(Polynomial poly1, Polynomial poly2) { Polynomial result; int i = 0, j = 0, k = 0; while (i < poly1.numTerms && j < poly2.numTerms) { if (poly1.termArray[i].exp > poly2.termArray[j].exp) { result.termArray[k++] = poly1.termArray[i++]; } else if (poly1.termArray[i].exp < poly2.termArray[j].exp) { result.termArray[k++] = poly2.termArray[j++]; } else { result.termArray[k].coeff = poly1.termArray[i].coeff + poly2.termArray[j].coeff; result.termArray[k++].exp = poly1.termArray[i++].exp; j++; } } while (i < poly1.numTerms) { result.termArray[k++] = poly1.termArray[i++]; } while (j < poly2.numTerms) { result.termArray[k++] = poly2.termArray[j++]; } result.numTerms = k; return result; } int main() { Polynomial poly1, poly2, result; readPoly(&poly1); readPoly(&poly2); printPoly(poly1); printPoly(poly2); result = addPoly(poly1, poly2); printPoly(result); return 0; }

相关推荐

以下是一元多项式的加法运算的C语言代码实现: c #include <stdio.h> #include <stdlib.h> /* 定义多项式的结构体 */ typedef struct PolyNode *Polynomial; struct PolyNode { int coef; /* 系数 */ int expon; /* 指数 */ Polynomial next; /* 指向下一项的指针 */ }; /* 多项式加法运算 */ Polynomial PolyAdd(Polynomial A, Polynomial B) { Polynomial head, tail, temp; head = (Polynomial) malloc(sizeof(struct PolyNode)); tail = head; while (A && B) { /* A和B都非空 */ if (A->expon == B->expon) { /* 次数相等 */ int sum = A->coef + B->coef; if (sum != 0) { /* 系数和不为0 */ temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = sum; temp->expon = A->expon; tail->next = temp; tail = temp; } A = A->next; B = B->next; } else if (A->expon > B->expon) { /* A的次数大于B的次数 */ temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = A->coef; temp->expon = A->expon; tail->next = temp; tail = temp; A = A->next; } else { /* A的次数小于B的次数 */ temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = B->coef; temp->expon = B->expon; tail->next = temp; tail = temp; B = B->next; } } /* 将剩余的项添加到结果多项式中 */ for (; A; A = A->next) { temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = A->coef; temp->expon = A->expon; tail->next = temp; tail = temp; } for (; B; B = B->next) { temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = B->coef; temp->expon = B->expon; tail->next = temp; tail = temp; } tail->next = NULL; temp = head; head = head->next; free(temp); /* 释放头结点 */ return head; } /* 多项式读入 */ Polynomial ReadPoly() { Polynomial head, tail, temp; int n, c, e; head = (Polynomial) malloc(sizeof(struct PolyNode)); head->next = NULL; tail = head; scanf("%d", &n); /* 读入项数 */ while (n--) { scanf("%d %d", &c, &e); temp = (Polynomial) malloc(sizeof(struct PolyNode)); temp->coef = c; temp->expon = e; tail->next = temp; tail = temp; } tail->next = NULL; temp = head; head = head->next; free(temp); /* 释放头结点 */ return head; } /* 多项式输出 */ void PrintPoly(Polynomial P) { if (!P) { printf("0 0\n"); return; } printf("%d %d", P->coef, P->expon); P = P->next; while (P) { printf(" %d %d", P->coef, P->expon); P = P->next; } printf("\n"); } /* 主函数 */ int main() { Polynomial A, B, C; A = ReadPoly(); B = ReadPoly(); C = PolyAdd(A, B); PrintPoly(C); return 0; } 其中,PolyNode 结构体表示一项多项式,Polynomial 则是指向 PolyNode 的指针类型。PolyAdd 函数实现了多项式的加法运算,ReadPoly 函数实现了多项式的读入,PrintPoly 函数实现了多项式的输出。在主函数中,先读入两个多项式,然后调用 PolyAdd 函数将它们相加,最后输出结果多项式。
#include <stdio.h> #define MAX_TERMS 100 typedef struct { float coef; // 系数 int exp; // 指数 } Term; void input_poly(Term poly[]); void add_poly(const Term poly1[], const Term poly2[], Term result[]); void print_poly(const Term poly[]); int main() { Term poly1[MAX_TERMS], poly2[MAX_TERMS], result[MAX_TERMS]; printf("请输入第一个多项式:\n"); input_poly(poly1); printf("请输入第二个多项式:\n"); input_poly(poly2); add_poly(poly1, poly2, result); printf("两个多项式相加的结果为:\n"); print_poly(result); return 0; } void input_poly(Term poly[]) { int i = 0; while (1) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &poly[i].coef, &poly[i].exp); if (poly[i].coef == 0 && poly[i].exp == 0) { break; } i++; } } void add_poly(const Term poly1[], const Term poly2[], Term result[]) { int i = 0, j = 0, k = 0; while (poly1[i].coef != 0 || poly1[i].exp != 0 || poly2[j].coef != 0 || poly2[j].exp != 0) { if (poly1[i].exp > poly2[j].exp) { result[k] = poly1[i]; i++; } else if (poly1[i].exp < poly2[j].exp) { result[k] = poly2[j]; j++; } else { result[k].coef = poly1[i].coef + poly2[j].coef; result[k].exp = poly1[i].exp; i++; j++; } k++; } result[k].coef = 0; result[k].exp = 0; } void print_poly(const Term poly[]) { int i = 0; while (poly[i].coef != 0 || poly[i].exp != 0) { if (i > 0 && poly[i].coef > 0) { printf("+"); } if (poly[i].coef != 1 && poly[i].coef != -1) { printf("%.2f", poly[i].coef); } else if (poly[i].coef == -1) { printf("-"); } if (poly[i].exp == 0) { printf("%.2f", poly[i].coef); } else if (poly[i].exp == 1) { printf("x"); } else { printf("x^%d", poly[i].exp); } i++; } printf("\n"); }
可以使用链表来存储一元多项式。 具体实现步骤如下: 1. 定义一个结构体来表示一项多项式,包括系数和指数两个成员变量。 2. 定义一个链表节点结构体,包括一项多项式和一个指向下一个节点的指针。 3. 定义一个函数来创建一项多项式的链表,输入系数和指数,返回一个链表头指针。 4. 定义一个函数来打印一元多项式。 5. 定义一个函数来实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针。 6. 在主函数中,循环输入一元多项式的系数和指数,直到输入(0,0)为止。然后调用创建链表函数,分别创建两个一元多项式的链表。接着调用加法运算函数,计算并打印结果。 以下是示例代码: c #include <stdio.h> #include <stdlib.h> // 一项多项式结构体 struct PolyTerm { int coef; // 系数 int exp; // 指数 }; // 链表节点结构体 struct Node { struct PolyTerm term; // 一项多项式 struct Node* next; // 下一个节点的指针 }; // 创建一项多项式的链表,输入系数和指数,返回一个链表头指针 struct Node* createPoly(int coef, int exp) { struct Node* head = (struct Node*)malloc(sizeof(struct Node)); head->term.coef = coef; head->term.exp = exp; head->next = NULL; return head; } // 打印一元多项式 void printPoly(struct Node* head) { struct Node* p = head; while (p != NULL) { printf("%d*x^%d", p->term.coef, p->term.exp); p = p->next; if (p != NULL && p->term.coef > 0) { printf("+"); } } printf("\n"); } // 实现一元多项式的加法运算,输入两个链表头指针,返回一个链表头指针 struct Node* addPoly(struct Node* head1, struct Node* head2) { struct Node* p1 = head1; struct Node* p2 = head2; struct Node* head3 = (struct Node*)malloc(sizeof(struct Node)); struct Node* p3 = head3; while (p1 != NULL && p2 != NULL) { if (p1->term.exp > p2->term.exp) { p3->term = p1->term; p1 = p1->next; } else if (p1->term.exp < p2->term.exp) { p3->term = p2->term; p2 = p2->next; } else { p3->term.coef = p1->term.coef + p2->term.coef; if (p3->term.coef != 0) { p3->term.exp = p1->term.exp; p1 = p1->next; p2 = p2->next; } else { p1 = p1->next; p2 = p2->next; continue; } } p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p1 != NULL) { p3->term = p1->term; p1 = p1->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } while (p2 != NULL) { p3->term = p2->term; p2 = p2->next; p3->next = (struct Node*)malloc(sizeof(struct Node)); p3 = p3->next; p3->next = NULL; } p3 = head3; head3 = head3->next; free(p3); return head3; } int main() { struct Node* head1 = NULL; struct Node* head2 = NULL; struct Node* head3 = NULL; int coef, exp; printf("Input polynomial A:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head1 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head1->next; head1->next = p; } printf("Input polynomial B:(coef, exp)\n"); scanf("%d%d", &coef, &exp); head2 = createPoly(coef, exp); while (coef != 0 || exp != 0) { scanf("%d%d", &coef, &exp); if (coef == 0 && exp == 0) { break; } struct Node* p = createPoly(coef, exp); p->next = head2->next; head2->next = p; } printf("Polynomial A: "); printPoly(head1); printf("Polynomial B: "); printPoly(head2); head3 = addPoly(head1, head2); printf("Polynomial A+B: "); printPoly(head3); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode { int coef; // 系数 int expon; // 指数 Polynomial next; // 指向下一个节点的指针 }; Polynomial ReadPoly(); // 读入多项式 Polynomial Add(Polynomial P1, Polynomial P2); // 多项式相加 void PrintPoly(Polynomial P); // 输出多项式 int main() { Polynomial P1, P2, PS; // 读入两个多项式 P1 = ReadPoly(); P2 = ReadPoly(); // 计算多项式相加 PS = Add(P1, P2); // 输出相加的结果 PrintPoly(PS); return 0; } Polynomial ReadPoly() { Polynomial P, Rear, t; int c, e; // 初始化多项式头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->next = NULL; Rear = P; // 读入每一项 scanf("%d %d", &c, &e); while (c != 0 || e != 0) { t = (Polynomial)malloc(sizeof(struct PolyNode)); t->coef = c; t->expon = e; t->next = NULL; Rear->next = t; Rear = t; scanf("%d %d", &c, &e); } return P; } Polynomial Add(Polynomial P1, Polynomial P2) { Polynomial t1, t2, Rear, t; int sum; // 初始化结果多项式头节点 t1 = P1->next; t2 = P2->next; t = (Polynomial)malloc(sizeof(struct PolyNode)); t->next = NULL; Rear = t; // 对两个多项式进行相加 while (t1 && t2) { if (t1->expon > t2->expon) { Rear->next = t1; Rear = t1; t1 = t1->next; } else if (t1->expon < t2->expon) { Rear->next = t2; Rear = t2; t2 = t2->next; } else { sum = t1->coef + t2->coef; if (sum != 0) { t->coef = sum; t->expon = t1->expon; Rear->next = t; Rear = t; } t1 = t1->next; t2 = t2->next; } } // 将未处理完的节点接到结果多项式的末尾 for (; t1; t1 = t1->next) { Rear->next = t1; Rear = t1; } for (; t2; t2 = t2->next) { Rear->next = t2; Rear = t2; } // 删除结果多项式头节点 Rear = t; t = t->next; free(Rear); return t; } void PrintPoly(Polynomial P) { if (!P) { printf("0 0\n"); return; } while (P) { printf("%d %d", P->coef, P->expon); P = P->next; if (P) { printf(" "); } else { printf("\n"); } } }
以下是一元多项式加法运算的C语言代码: #include <stdio.h> #include <stdlib.h> #define MAX_TERM 100 // 多项式的最大项数 typedef struct { float coef; // 系数 int expn; // 指数 } term; typedef struct { term data[MAX_TERM]; int len; } polynomial; void create_polynomial(polynomial *p) { // 创建多项式 printf("请输入多项式的项数:"); scanf("%d", &p->len); for (int i = 0; i < p->len; ++i) { printf("请输入第%d项的系数和指数:", i + 1); scanf("%f%d", &p->data[i].coef, &p->data[i].expn); } } void print_polynomial(polynomial p) { // 输出多项式 for (int i = 0; i < p.len; ++i) { if (p.data[i].coef > 0 && i > 0) { printf("+"); } printf("%.2fx^%d", p.data[i].coef, p.data[i].expn); } printf("\n"); } polynomial add_polynomial(polynomial p1, polynomial p2) { // 多项式加法 polynomial result = {0}; int i = 0, j = 0, k = 0; while (i < p1.len && j < p2.len) { if (p1.data[i].expn > p2.data[j].expn) { result.data[k++] = p1.data[i++]; } else if (p1.data[i].expn < p2.data[j].expn) { result.data[k++] = p2.data[j++]; } else { float sum = p1.data[i].coef + p2.data[j].coef; if (sum != 0) { result.data[k].coef = sum; result.data[k++].expn = p1.data[i].expn; } ++i; ++j; } } while (i < p1.len) { result.data[k++] = p1.data[i++]; } while (j < p2.len) { result.data[k++] = p2.data[j++]; } result.len = k; return result; } int main() { polynomial p1 = {0}, p2 = {0}, result = {0}; printf("请输入第一个多项式:\n"); create_polynomial(&p1); printf("请输入第二个多项式:\n"); create_polynomial(&p2); printf("第一个多项式为:"); print_polynomial(p1); printf("第二个多项式为:"); print_polynomial(p2); result = add_polynomial(p1, p2); printf("两个多项式相加的结果为:"); print_polynomial(result); return 0; } 在代码中,我们首先定义了一个term结构体表示多项式的一项,其中包括系数和指数两个成员变量。然后定义了一个polynomial结构体表示多项式,其中包括一个term类型的数组和一个表示多项式长度的len变量。 接着,我们实现了三个函数:create_polynomial用于创建多项式,print_polynomial用于输出多项式,add_polynomial用于实现多项式加法。 在main函数中,我们先分别创建了两个多项式p1和p2,然后输出它们,再调用add_polynomial函数求出它们的和result,并输出结果。
#include <stdio.h> #include <stdlib.h> typedef struct node { int coef; // 系数 int exp; // 指数 struct node* next; // 指向下一个节点的指针 } Node; Node* create_node(int coef, int exp) { Node* p = (Node*)malloc(sizeof(Node)); p->coef = coef; p->exp = exp; p->next = NULL; return p; } Node* create_poly() { Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 int coef, exp; printf("请输入一元多项式的系数和指数(以0,0结束):\n"); scanf("%d,%d", &coef, &exp); while (coef != 0 || exp != 0) { // 以(0,0)作为输入结束 Node* p = create_node(coef, exp); tail->next = p; // 尾节点指向新节点 tail = p; // 尾指针指向新节点 scanf("%d,%d", &coef, &exp); } return head; } void print_poly(Node* head) { Node* p = head->next; while (p) { // 遍历链表 if (p->coef > 0 && p != head->next) { // 系数为正数需要输出“+” printf("+"); } printf("%d", p->coef); // 输出系数 if (p->exp > 1) { // 指数大于1需要输出“x^exp” printf("x^%d", p->exp); } else if (p->exp == 1) { // 指数为1只需要输出“x” printf("x"); } p = p->next; } printf("\n"); } Node* add_poly(Node* poly1, Node* poly2) { Node* head1 = poly1->next; Node* head2 = poly2->next; Node* head = create_node(0, 0); // 创建一个头节点 Node* tail = head; // 尾指针指向头节点 while (head1 && head2) { // 遍历两个链表 if (head1->exp > head2->exp) { // 如果poly1的指数大于poly2的指数 tail->next = create_node(head1->coef, head1->exp); // 将poly1的节点添加到结果链表中 head1 = head1->next; } else if (head1->exp < head2->exp) { // 如果poly1的指数小于poly2的指数 tail->next = create_node(head2->coef, head2->exp); // 将poly2的节点添加到结果链表中 head2 = head2->next; } else { // 如果poly1的指数等于poly2的指数 int coef = head1->coef + head2->coef; if (coef != 0) { // 系数不为0才添加节点 tail->next = create_node(coef, head1->exp); // 将系数相加后的节点添加到结果链表中 } head1 = head1->next; head2 = head2->next; } tail = tail->next; // 尾指针指向新节点 } // 将剩余的节点添加到结果链表中 while (head1) { tail->next = create_node(head1->coef, head1->exp); head1 = head1->next; tail = tail->next; } while (head2) { tail->next = create_node(head2->coef, head2->exp); head2 = head2->next; tail = tail->next; } return head; } int main() { printf("请输入第一个一元多项式:\n"); Node* poly1 = create_poly(); printf("请输入第二个一元多项式:\n"); Node* poly2 = create_poly(); printf("第一个多项式:"); print_poly(poly1); printf("第二个多项式:"); print_poly(poly2); Node* sum = add_poly(poly1, poly2); printf("多项式相加的结果:"); print_poly(sum); return 0; }
#include <stdio.h> #include <stdlib.h> #define MAXSIZE 100 // 定义一元多项式结构体 typedef struct { float coef; // 系数 int expn; // 指数 } ElemType; typedef struct { ElemType *elem; // 存储空间基地址 int length; // 当前长度 int listsize; // 分配的存储容量 } SqList; // 初始化线性表 void InitList(SqList *L) { L->elem = (ElemType *)malloc(MAXSIZE * sizeof(ElemType)); if (!L->elem) { exit(0); // 存储分配失败 } L->length = 0; L->listsize = MAXSIZE; } // 增加线性表长度 void IncreaseSize(SqList *L, int len) { ElemType *newbase; newbase = (ElemType *)realloc(L->elem, (L->listsize + len) * sizeof(ElemType)); if (!newbase) { exit(0); // 存储分配失败 } L->elem = newbase; L->listsize += len; } // 插入元素 void ListInsert(SqList *L, int i, ElemType e) { if (i < 1 || i > L->length + 1) { // i值不合法 exit(0); } if (L->length >= L->listsize) { // 当前存储空间已满,增加分配 IncreaseSize(L, MAXSIZE); } ElemType *q = &(L->elem[i - 1]); for (ElemType *p = &(L->elem[L->length - 1]); p >= q; --p) { *(p + 1) = *p; } *q = e; ++L->length; } // 一元多项式相加 void AddPolyn(SqList *La, SqList *Lb) { int i = 1, j = 1, k = 0; while (i <= La->length && j <= Lb->length) { if (La->elem[i - 1].expn == Lb->elem[j - 1].expn) { // 指数相等,系数相加 float sum = La->elem[i - 1].coef + Lb->elem[j - 1].coef; if (sum != 0) { ElemType e = {sum, La->elem[i - 1].expn}; ListInsert(La, ++k, e); } ++i; ++j; } else if (La->elem[i - 1].expn < Lb->elem[j - 1].expn) { // 将La中指数较小的赋值给结果多项式 ListInsert(La, ++k, La->elem[i - 1]); ++i; } else { // 将Lb中指数较小的赋值给结果多项式 ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } // 将La或Lb中剩余的元素添加到结果多项式中 while (i <= La->length) { ListInsert(La, ++k, La->elem[i - 1]); ++i; } while (j <= Lb->length) { ListInsert(La, ++k, Lb->elem[j - 1]); ++j; } } int main() { SqList La, Lb; InitList(&La); InitList(&Lb); printf("请输入多项式1的系数和指数,以(0,0)作为输入结束:\n"); float coef; int expn; scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&La, La.length + 1, e); scanf("%f,%d", &coef, &expn); } printf("请输入多项式2的系数和指数,以(0,0)作为输入结束:\n"); scanf("%f,%d", &coef, &expn); while (coef != 0 || expn != 0) { ElemType e = {coef, expn}; ListInsert(&Lb, Lb.length + 1, e); scanf("%f,%d", &coef, &expn); } AddPolyn(&La, &Lb); printf("多项式相加的结果为:\n"); for (int i = 0; i < La.length; ++i) { printf("%.1fX^%d", La.elem[i].coef, La.elem[i].expn); if (i != La.length - 1) { printf("+"); } } printf("\n"); return 0; }
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }
一元多项式可以用链表来实现,每个节点表示一个项,包含系数和指数两个成员变量。加法运算就是将两个链表按照指数从小到大的顺序依次合并,如果两个节点的指数相同,则将它们的系数相加,否则将指数小的节点插入到结果链表中。 以下是 C++ 实现代码: c++ #include <iostream> using namespace std; struct Node { int coef; // 系数 int exp; // 指数 Node* next; Node(int c = 0, int e = 0, Node* n = nullptr) : coef(c), exp(e), next(n) {} }; void addPoly(Node* a, Node* b) { Node* head = new Node(); // 结果链表的头结点 Node* tail = head; // 结果链表的尾结点 while (a != nullptr && b != nullptr) { if (a->exp < b->exp) { tail->next = new Node(a->coef, a->exp); a = a->next; } else if (a->exp > b->exp) { tail->next = new Node(b->coef, b->exp); b = b->next; } else { int coefSum = a->coef + b->coef; if (coefSum != 0) { tail->next = new Node(coefSum, a->exp); } a = a->next; b = b->next; } tail = tail->next; } // 将剩余的结点插入到结果链表中 while (a != nullptr) { tail->next = new Node(a->coef, a->exp); a = a->next; tail = tail->next; } while (b != nullptr) { tail->next = new Node(b->coef, b->exp); b = b->next; tail = tail->next; } // 输出结果链表 Node* p = head->next; while (p != nullptr) { cout << p->coef << "x^" << p->exp << " + "; p = p->next; } cout << "0" << endl; } int main() { // 构造两个多项式:a = 3x^2 + 2x + 1,b = 4x^3 + 2x^2 + 5 Node* a = new Node(3, 2, new Node(2, 1, new Node(1, 0))); Node* b = new Node(4, 3, new Node(2, 2, new Node(5, 0))); addPoly(a, b); // 输出结果:4x^3 + 5x^2 + 2x + 1 return 0; }

最新推荐

C语言:一元多项式加减法运算(链表 附答案).docx

C语言链表的入门题,里面提供了两种思路供参考,用链表来实现一元多项式的加减法,并按照一定规律输出。也是练习链表和排序算法的一道小实验,初学链表的小伙伴可以参考参考噢

300126锐奇股份财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

【路径规划】基于matlab原子搜索算法栅格地图机器人最短路径规划【含Matlab源码 2887期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

【语音隐写】基于matlab DCT扩频语音水印【含Matlab源码 466期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

C#课程设计 扫雷游戏.zip

C#课程设计 扫雷游戏

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx