高斯消去法MATLAB程序高斯消去法MATLAB程序
时间: 2024-09-25 15:00:40 浏览: 45
高斯消元法是一种线性代数中的求解线性方程组的经典算法。在MATLAB中,可以使用内置函数如`inv()`、`solve()`, 或者自己编写函数来实现这个过程。以下是基本的高斯消元步骤的MATLAB伪代码:
```matlab
function x = gauss_elimination(A, b)
% A: 系统的系数矩阵
% b: 目标向量
n = length(b); % 系数矩阵的行数
A = [A; eye(n)]; % 将单位矩阵添加到A的底部以保持增广矩阵
b = [b; zeros(1, n)]; % 同样将零向量添加到目标向量的末尾
for i = 1:n
% 消元阶段,找到当前行的最大元素并交换行
[~, max_index] = max(abs(A(i:end, i)));
if max_index ~= i
temp = A(i,:);
A(i,:) = A(max_index,:);
A(max_index,:) = temp;
temp = b(i);
b(i) = b(max_index);
b(max_index) = temp;
end
% 对当前行进行消元操作
for j = i+1:n
factor = A(j,i) / A(i,i);
A(j,:) = A(j,:) - factor * A(i,:);
b(j) = b(j) - factor * b(i);
end
end
% 解决得到的上三角系统
x = backsubstitution(A(1:end-1,:), b(1:end-1));
% 回带计算最后一列的值
x(end) = b(end) - sum(A(end,1:end-1) .* x(1:end-1));
end
function y = backsubstitution(U, c)
% U: 上三角矩阵
% c: 已经消除部分的目标向量
y = c;
for i = size(U, 1):-1:1
y(i) = (c(i) - U(i,i+1:end) * y(i+1:end)) / U(i,i);
end
end
阅读全文