the u,v of point (nx/2,ny/2)

时间: 2023-12-05 15:01:30 浏览: 24
点(nx/2,ny/2)的u和v是什么? 在计算机图形学中,点(nx/2,ny/2)通常代表着图像的中心点,其中nx和ny分别代表图像的宽度和高度。而在图像处理中,通常使用(u,v)来表示频域中的坐标,其中u代表水平方向,v代表垂直方向。 对于点(nx/2,ny/2)来说,它的u和v的值可以分别通过以下公式计算得出: u = nx/2 v = ny/2 因此,点(nx/2,ny/2)的u和v分别等于图像宽度的一半和图像高度的一半。 在图像处理中,这个坐标通常被用来进行频域变换或滤波操作,因为它代表了图像的中心位置,对其进行操作可以更好地影响整个图像。通过了解点(nx/2,ny/2)的u和v的值,我们可以更好地理解如何对图像进行频域处理,从而达到更好的图像处理效果。
相关问题

package work; import java.applet.Applet; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.geom.Line2D; import java.awt.geom.Point2D; public class CyrusBeckAlgorithmApplet extends Applet { private static final long serialVersionUID = 1L; private Point2D.Double[] clipWindow; private Point2D.Double[][] lines; private double[][] vectors; private double[] p1, p2, D; @Override public void init() { clipWindow = new Point2D.Double[3]; clipWindow[0] = new Point2D.Double(200, 275); clipWindow[1] = new Point2D.Double(250.0 / 3, 100); clipWindow[2] = new Point2D.Double(950.0 / 3, 100); lines = new Point2D.Double[2][2]; lines[0][0] = new Point2D.Double(0, 120); lines[0][1] = new Point2D.Double(400, 120); lines[1][0] = new Point2D.Double(0, 180); lines[1][1] = new Point2D.Double(400, 180); vectors = new double[2][2]; D = new double[2]; } @Override public void paint(Graphics g) { super.paint(g); Graphics2D g2d = (Graphics2D) g; // draw clip window g2d.setColor(Color.BLACK); g2d.draw(new Line2D.Double(clipWindow[0], clipWindow[1])); g2d.draw(new Line2D.Double(clipWindow[1], clipWindow[2])); g2d.draw(new Line2D.Double(clipWindow[2], clipWindow[0])); // draw lines for (int i = 0; i < lines.length; i++) { Point2D.Double p1 = lines[i][0]; Point2D.Double p2 = lines[i][1]; cyrusBeckClip(g2d, p1, p2); } } private void cyrusBeckClip(Graphics2D g2d, Point2D.Double p1, Point2D.Double p2) { double tE = 0, tL = 1; double dx = p2.x - p1.x; double dy = p2.y - p1.y; for (int i = 0; i < clipWindow.length; i++) { Point2D.Double P1 = clipWindow[i]; Point2D.Double P2 = clipWindow[(i + 1) % clipWindow.length]; double nx = -(P2.y - P1.y); double ny = P2.x - P1.x; double D = -nx * P1.x - ny * P1.y; double numerator = nx * p1.x + ny * p1.y + D; double denominator = -(nx * dx + ny * dy); if (denominator == 0) { if (numerator < 0) { return; } } else { double t = numerator / denominator; if (denominator < 0) { tE = Math.max(tE, t); } else { tL = Math.min(tL, t); } } } if (tE <= tL) { double x1 = p1.x + tE * dx; double y1 = p1.y + tE * dy; double x2 = p1.x + tL * dx; double y2 = p1.y + tL * dy; g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(p1, new Point2D.Double(x1, y1))); g2d.setColor(Color.RED); g2d.draw(new Line2D.Double(new Point2D.Double(x1, y1), new Point2D.Double(x2, y2))); g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(new Point2D.Double(x2, y2), p2)); } } } 将此代码改为 Java 应用程序运行

将代码中的 `extends Applet` 和 `public void init()` 方法删除,并将 `public void paint(Graphics g)` 方法改为 `public static void main(String[] args)` 方法,代码如下: ```java package work; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.geom.Line2D; import java.awt.geom.Point2D; import javax.swing.JFrame; import javax.swing.JPanel; public class CyrusBeckAlgorithmApp { private static final Point2D.Double[] clipWindow = { new Point2D.Double(200, 275), new Point2D.Double(250.0 / 3, 100), new Point2D.Double(950.0 / 3, 100) }; private static final Point2D.Double[][] lines = { { new Point2D.Double(0, 120), new Point2D.Double(400, 120) }, { new Point2D.Double(0, 180), new Point2D.Double(400, 180) } }; public static void main(String[] args) { JFrame frame = new JFrame("Cyrus Beck Algorithm"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); JPanel panel = new JPanel() { private static final long serialVersionUID = 1L; @Override protected void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2d = (Graphics2D) g; // draw clip window g2d.setColor(Color.BLACK); g2d.draw(new Line2D.Double(clipWindow[0], clipWindow[1])); g2d.draw(new Line2D.Double(clipWindow[1], clipWindow[2])); g2d.draw(new Line2D.Double(clipWindow[2], clipWindow[0])); // draw lines for (int i = 0; i < lines.length; i++) { Point2D.Double p1 = lines[i][0]; Point2D.Double p2 = lines[i][1]; cyrusBeckClip(g2d, p1, p2); } } }; frame.add(panel); frame.setSize(400, 300); frame.setVisible(true); } private static void cyrusBeckClip(Graphics2D g2d, Point2D.Double p1, Point2D.Double p2) { double tE = 0, tL = 1; double dx = p2.x - p1.x; double dy = p2.y - p1.y; for (int i = 0; i < clipWindow.length; i++) { Point2D.Double P1 = clipWindow[i]; Point2D.Double P2 = clipWindow[(i + 1) % clipWindow.length]; double nx = -(P2.y - P1.y); double ny = P2.x - P1.x; double D = -nx * P1.x - ny * P1.y; double numerator = nx * p1.x + ny * p1.y + D; double denominator = -(nx * dx + ny * dy); if (denominator == 0) { if (numerator < 0) { return; } } else { double t = numerator / denominator; if (denominator < 0) { tE = Math.max(tE, t); } else { tL = Math.min(tL, t); } } } if (tE <= tL) { double x1 = p1.x + tE * dx; double y1 = p1.y + tE * dy; double x2 = p1.x + tL * dx; double y2 = p1.y + tL * dy; g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(p1, new Point2D.Double(x1, y1))); g2d.setColor(Color.RED); g2d.draw(new Line2D.Double(new Point2D.Double(x1, y1), new Point2D.Double(x2, y2))); g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(new Point2D.Double(x2, y2), p2)); } } } ```

将四位维数据转换为二维阵列点,前两维横向和纵向间距为x1和y1,最大排放数量分别为Nx1和Ny1,第三维和第四维横纵向间距为x2和y2,最大排放数量分别为Nx2和Ny2,依次类推更高维的情况,代码示例

以下是将多维数据转换为二维阵列点的 Python 代码示例: ```python def multi_dim_to_2d(data, spacing, max_count): ndim = len(data.shape) assert ndim % 2 == 0, "The number of dimensions must be even." # Calculate the total number of points in each dimension total_points = [] for i in range(ndim // 2): total_points.append(min(data.shape[i], max_count[i])) total_points.append(min(data.shape[i + ndim // 2], max_count[i + ndim // 2])) # Calculate the spacing between each point in each dimension point_spacing = [] for i in range(ndim // 2): point_spacing.append(spacing[i]) point_spacing.append(spacing[i + ndim // 2]) # Create a grid of points in two dimensions meshgrid = np.meshgrid(*[np.arange(n) for n in total_points], indexing='ij') points_2d = np.empty((np.prod(total_points), 2), dtype=float) for i in range(len(point_spacing)): points_2d[:, i % 2] += point_spacing[i] * meshgrid[i].ravel() return points_2d ``` 其中,`data` 是多维数据,`spacing` 是每个维度之间的间距,`max_count` 是每个维度的最大排放数量。函数返回一个二维数组 `points_2d`,其中包含所有转换后的点。

相关推荐

将JAVA代码转换成MATLAB:import java.util.*; public class CenterTree { public static final int N = 5; // 中心树加上最近的四个点一共有5个点 public static void main(String[] args) { // 从控制台读取中心点坐标 Scanner scanner = new Scanner(System.in); System.out.print("请输入中心点坐标x:"); double cx = scanner.nextDouble(); System.out.print("请输入中心点坐标y:"); double cy = scanner.nextDouble(); Point center = new Point(cx, cy); // 从控制台读取最近的四个点的坐标 Point[] nearest = new Point[N-1]; for (int i = 0; i < nearest.length; i++) { System.out.printf("请输入最近的第%d个点坐标x:", i+1); double nx = scanner.nextDouble(); System.out.printf("请输入最近的第%d个点坐标y:", i+1); double ny = scanner.nextDouble(); nearest[i] = new Point(nx, ny); } // 计算每个点到中心点之间的夹角 List<Double> angles = new ArrayList<>(); for (Point p : nearest) { double dx = p.x - center.x; double dy = p.y - center.y; double radians = Math.atan2(dy, dx); double degrees = Math.toDegrees(radians); degrees = (degrees + 360) % 360; angles.add(degrees); } // 找到最小的四个夹角 List<Double> minAngles = new ArrayList<>(); for (int i = 0; i < nearest.length; i++) { // 找到当前点的相邻点 int nIndex = i == nearest.length - 1 ? 0 : i+1; // 计算相邻点到中心点的夹角 double dx = nearest[nIndex].x - center.x; double dy = nearest[nIndex].y - center.y; double radians = Math.atan2(dy, dx); double degrees = Math.toDegrees(radians); degrees = (degrees + 360) % 360; // 记录当前点和相邻点的夹角 double angle = Math.abs(angles.get(i) - degrees); angle = Math.min(angle, 360 - angle); minAngles.add(angle); } Collections.sort(minAngles); System.out.println(minAngles); // 计算最小的四个夹角的度数总和 double sum = 0; for (double angle : minAngles.subList(0, 4)) {

编写程序声明Point类,在类中声明整型的私有成员变量x、y,声明成员函数Point& operator++( );Point operator++( int);以实现对Point类重载“++”(自增)运算符,声明成员函数Point& operator--( );Point operator--( int);以实现对Point类重载“--”(自减)运算符,实现对坐标值的改变。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬ 在主函数中完成充分测试! 输入 输出 1 1 a的值为:1 , 1 after a++,a的值为:2 , 2 after ++a,a的值为:3 , 3 after a--,a的值为:2 , 2 after --a,a的值为:1 , 1 #include<iostream> using namespace std; class Point { private: int x,y; public: Point(int nx=0,int ny=0):x(nx),y(ny){ } Point& operator++( ); Point operator++(int); Point& operator--( ); Point operator--(int); int getx(){return x;} int gety(){return y;} }; ........ int main() { int m,n; cin>>m>>n; Point a(m,n); cout<<"a的值为:"<<a.getx()<<" , "<<a.gety()<<endl; a++; cout<<"after a++,a的值为:"<<a.getx()<<" , "<<a.gety()<<endl; ++a; cout<<"after ++a,a的值为:"<<a.getx()<<" , "<<a.gety()<<endl; a--; cout<<"after a--,a的值为:"<<a.getx()<<" , "<<a.gety()<<endl; --a; cout<<"after --a,a的值为:"<<a.getx()<<" , "<<a.gety()<<endl; return 0; }

#include <iostream> #include <iomanip> #include <string> using namespace std; class Point { private: string type; double x, y; public: Point(string t = "", double xx = 0, double yy = 0) : type(t), x(xx), y(yy) {} Point(const Point& p) : type(p.type), x(p.x), y(p.y) {} virtual ~Point() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Point& p) { os << "Type: " << p.type << "\nX: " << fixed << setprecision(2) << p.x << "\nY: " << fixed << setprecision(2) << p.y; return os; } virtual void PrintName() { cout << "This is a Point object." << endl; } }; class Circle : public Point { private: double r; public: Circle(string t = "", double xx = 0, double yy = 0, double rr = 0) : Point(t, xx, yy), r(rr) {} Circle(const Circle& c) : Point(c), r(c.r) {} ~Circle() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Circle& c) { os << static_cast<const Point&>(c) << "\nRadius: " << fixed << setprecision(2) << c.r; return os; } virtual void PrintName() { cout << "This is a Circle object." << endl; } }; class Cylinder : public Circle { private: double h; public: Cylinder(string t = "", double xx = 0, double yy = 0, double rr = 0, double hh = 0) : Circle(t, xx, yy, rr), h(hh) {} Cylinder(const Cylinder& cy) : Circle(cy), h(cy.h) {} ~Cylinder() { cout << type << " object is destroyed." << endl; } friend ostream& operator<<(ostream& os, const Cylinder& cy) { os << static_cast<const Circle&>(cy) << "\nHeight: " << fixed << setprecision(2) << cy.h; return os; } virtual void PrintName() { cout << "This is a Cylinder object." << endl; } }; int main() { Point p1("Point1", 1, 2); Point p2("Point2", 3, 4); Circle c1("Circle1", 5, 6, 7); Circle c2("Circle2", 8, 9, 10); Cylinder cy1("Cylinder1", 11, 12, 13, 14); Cylinder cy2("Cylinder2", 15, 16, 17, 18); cout << p1 << endl; cout << p2 << endl; cout << c1 << endl; cout << c2 << endl; cout << cy1 << endl; cout << cy2 << endl; Point* ptr; ptr = &p1; ptr->PrintName(); ptr = &c1; ptr->PrintName(); ptr = &cy1; ptr->PrintName(); return 0; }c:\program files (x86)\microsoft visual c++6.0\myprojects\shiayn6\6.cpp(27) : error C2248: 'type' : cannot access private member declared in class 'Point' c:\program files (x86)\microsoft visual c++6.0\myprojects\shiayn6\6.cpp(8) : see declaration of 'type' 执行 cl.exe 时出错.

vector points; for (size_t i = 0; i < input->size(); i++) { float px = input->points[i].x; float py = input->points[i].y; float pz = input->points[i].z; float nx = input->points[i].normal_x; float ny = input->points[i].normal_y; float nz = input->points[i].normal_z; points.push_back(PointVectorPair(Kernel::Point_3(px, py, pz), Kernel::Vector_3(nx, ny, nz))); } // ---------------------------------参数设置--------------------------------- const double s_angle = 25; // 平滑度,值越大越平滑,取值范围[0,90] const double edge_s = 0; // 边缘的敏感性取值范围[0,1] const double n_radius = 0.25; // 邻域点搜索半径 const std::size_t n_out = points.size() * 10; // 上采样后的点数 // ----------------------------------上采样---------------------------------- CGAL::edge_aware_upsample_point_set<CGAL::Parallel_if_available_tag>(points, std::back_inserter(points), CGAL::parameters::point_map(CGAL::First_of_pair_property_map()). normal_map(CGAL::Second_of_pair_property_map()). sharpness_angle(s_angle). // 控制输出结果的平滑度,值越大越平滑,取值范围[0,90]。 edge_sensitivity(edge_s). // 边缘的敏感性取值范围[0,1],边缘敏感度越大,在尖锐边缘处插入点的有限度越高 neighbor_radius(n_radius). // 邻域点的个数,如果提供,查询点的邻域是用一个固定的球面计算的半径 // 而不是固定数量的邻居。在这种情况下,参数k用于限制每个球邻域返回点的数量(避免高密度区域的点过多) number_of_output_points(n_out)); // 上采样后的点数 std::cout << "上采样完毕!!!" << std::endl;将上述代码中的CGAL带有法线的点云数据转换PCL库点云数据PointNormal

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩