用c++实现拓扑排序问题

时间: 2024-05-26 19:07:54 浏览: 118
拓扑排序是一种基于有向无环图(DAG)的排序算法,它将图中的所有节点排成一条线性序列,使得对于任何的有向边(u,v),都有u在序列中出现在v的前面。C++实现拓扑排序可以使用深度优先搜索(Depth First Search, DFS)和广度优先搜索(Breadth First Search, BFS)两种方式。 DFS实现拓扑排序的过程如下: 1. 首先遍历所有节点,对于每个未访问过的节点,进行一次DFS。 2. 对于每个节点的DFS过程中,记录其状态为“正在访问”。 3. 如果当前节点的邻居节点存在“正在访问”状态,则说明存在环,拓扑排序失败。 4. 否则,将当前节点状态改为“已访问”,并将其加入结果序列中。 BFS实现拓扑排序的过程如下: 1. 统计每个节点的入度。 2. 将入度为0的节点加入队列。 3. 对于队列中的每个节点,将其邻居节点的入度减1。 4. 如果某个邻居节点的入度减为0,则将其加入队列。 5. 将队列中的节点依次出队,加入结果序列中。
相关问题

使用c++实现拓扑排序

拓扑排序是图论中的一种排序方式,用于对有向无环图 (DAG) 中的顶点进行排序。 在 C 语言中,可以使用邻接表来存储图的数据结构,然后使用入度数组记录每个顶点的入度数,再利用队列实现拓扑排序。 下面是一个简单的实现示例: ``` #include<stdio.h> #include<stdlib.h> #define MAX_VERTEX_NUM 20 int vertex_num, edge_num; int in_degree[MAX_VERTEX_NUM]; int queue[MAX_VERTEX_NUM]; int head[MAX_VERTEX_NUM], tail; struct EdgeNode{ int to; int next; }; struct EdgeNode edges[MAX_VERTEX_NUM]; int edge_num = 0; void add_edge(int from, int to){ edges[edge_num].to = to; edges[edge_num].next = head[from]; head[from] = edge_num++; in_degree[to]++; } void topological_sort(){ int i, j, k; tail = 0; for (i = 0; i < vertex_num; i++){ if (!in_degree[i]) queue[tail++] = i; } while (tail){ int u = queue[--tail]; printf("%d ", u); for (i = head[u]; ~i; i = edges[i].next){ int v = edges[i].to; in_degree[v]--; if (!in_degree[v]) queue[tail++] = v; } } } int main(){ int i, j, k; memset(head, -1, sizeof(head)); scanf("%d%d", &vertex_num, &edge_num); for (i = 0; i < edge_num; i++){ int from, to; scanf("%d%d", &from, &to); add_edge(from, to); } topological_sort(); return 0; } ``` 希望这对你有所帮助!

用C++编写实现拓扑排序非递归算法

在C++中,我们可以使用邻接表(Adjacency List)的数据结构来实现拓扑排序的非递归算法。拓扑排序主要用于有向无环图(DAG,Directed Acyclic Graph)中,对节点进行线性排列,使得所有的边都是从前面的节点指向后面的节点。 下面是一个简单的非递归算法步骤: 1. 使用哈希表存储每个节点的入度(in-degree),记录有多少条边进入该节点。 2. 遍历图,将所有入度为0的节点加入到结果列表中,并将其出度减1(即减少依赖项)。 3. 对于剩下的节点,如果它们的入度仍然为0,继续加入结果列表。 4. 重复第二步和第三步,直到所有节点都被处理过。 以下是伪代码和部分C++代码实现: ```cpp #include <vector> using namespace std; class Graph { private: vector<int> indegrees; // 存储每个节点的入度 vector<vector<int>> adjList; // 邻接表 public: void addEdge(int src, int dest) { adjList[src].push_back(dest); indegrees[dest]++; } vector<int> topologicalSort() { vector<int> result; queue<int> q; // 初始化:入度为0的节点入队 for (int i = 0; i < indegrees.size(); ++i) { if (indegrees[i] == 0) q.push(i); } while (!q.empty()) { int node = q.front(); q.pop(); result.push_back(node); // 将节点添加到结果列表 for (int neighbor : adjList[node]) { indegrees[neighbor]--; if (indegrees[neighbor] == 0) q.push(neighbor); } } return result.size() == indegrees.size() ? result : vector<int>(); // 如果所有节点都已处理,返回结果;否则表示有循环 } }; // 使用示例 Graph g; g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 3); g.addEdge(2, 3); vector<int> sortedOrder = g.topologicalSort(); ```
阅读全文

相关推荐

最新推荐

recommend-type

C++实现拓扑排序(AOV网络)

C++实现拓扑排序(AOV网络) 拓扑排序是指在有向无环图(Directed Acyclic Graph,简称DAG)中对顶点的排序,使得对于每条边(u,v),顶点u在顶点v之前。拓扑排序可以应用于任务调度、项目管理、数据处理等领域。 ...
recommend-type

数据结构课设拓扑排序源代码(教学计划安排)

"拓扑排序在教学计划安排中的应用" 数据结构是计算机科学的基础课程,拓扑排序是数据结构中的一种重要算法。...在实现拓扑排序算法时,需要选择合适的存储结构和数据结构,例如邻接表存储结构和链式队列。
recommend-type

C++实现分水岭算法(Watershed Algorithm)

本文详细介绍了C++实现分水岭算法(Watershed Algorithm),该算法是一种基于拓扑理论的数学形态学的分割方法。下面是相关的知识点: 1. 分水岭算法的基本思想:将图像看作是测地学上的拓扑地貌,图像中每一点像素...
recommend-type

数学建模拟合与插值.ppt

数学建模拟合与插值.ppt
recommend-type

[net毕业设计]ASP.NET教育报表管理系统-权限管理模块(源代码+论文).zip

【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。