true_labels = Variable(torch.ones(N)).type(dtype) 修改
时间: 2023-11-20 10:06:56 浏览: 170
这段代码使用了PyTorch库创建了一个名为`true_labels`的变量。它是一个大小为N的张量,并且所有元素都设置为1。`Variable`函数在较新的版本中已经被弃用,可以直接使用`torch.tensor`来创建张量。`dtype`是指定张量数据类型的变量,你可以根据需要来选择。
修改后的代码如下:
```python
true_labels = torch.ones(N, dtype=dtype)
```
这样就创建了一个大小为N的张量`true_labels`,其中所有元素都是1,并且数据类型为`dtype`。
相关问题
for data in testloader: images, labels = data images = images.view(len(images), 1, 121).float() inputs, labels = images.to(device), labels.to(device) outputs = cnn(inputs) _, predicted = torch.max(outputs, 1) true_labels.append(labels.cpu().numpy()) predicted_labels.append(predicted.cpu().numpy()) true_labels = np.concatenate(true_labels) predicted_labels = np.concatenate(predicted_labels) cm = confusion_matrix(true_labels, predicted_labels, labels=[0, 1, 2, 3, 4]) print(cm)上述代码加入混淆矩阵可视化代码
你可以使用Matplotlib库中的函数来可视化混淆矩阵。以下是代码示例:
```python
import matplotlib.pyplot as plt
import itertools
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# 在计算混淆矩阵后,调用以下代码进行可视化
plot_confusion_matrix(cm, classes=['class0', 'class1', 'class2', 'class3', 'class4'])
plt.show()
```
其中,`cm`是混淆矩阵,`classes`是类别标签,可以根据实际情况进行修改。如果需要归一化混淆矩阵,可以将`normalize`参数设置为`True`。
请在代码中加入准确率:with torch.no_grad(): class_accuary_List=[] true_labels = [] predicted_labels = [] for data in testloader: images, labels = data images = images.view(len(images), 1, 121).float() inputs, labels = images.to(device), labels.to(device) outputs = cnn(inputs) _, predicted = torch.max(outputs, 1) true_labels.append(labels.cpu().numpy()) predicted_labels.append(predicted.cpu().numpy()) true_labels = np.concatenate(true_labels) predicted_labels = np.concatenate(predicted_labels) cm = confusion_matrix(true_labels, predicted_labels, labels=[0, 1, 2, 3, 4]) print(cm) for i in range(cm.shape[0]): acc = cm[i, i] / np.sum(cm[i]) class_accuary_List.append(acc) print("Class", i, "Accuracy:", acc)
好的,下面是加入准确率的代码:
```
with torch.no_grad():
class_accuracy_list = []
true_labels = []
predicted_labels = []
for data in testloader:
images, labels = data
images = images.view(len(images), 1, 121).float()
inputs, labels = images.to(device), labels.to(device)
outputs = cnn(inputs)
_, predicted = torch.max(outputs, 1)
true_labels.append(labels.cpu().numpy())
predicted_labels.append(predicted.cpu().numpy())
true_labels = np.concatenate(true_labels)
predicted_labels = np.concatenate(predicted_labels)
cm = confusion_matrix(true_labels, predicted_labels, labels=[0, 1, 2, 3, 4])
print(cm)
for i in range(cm.shape[0]):
acc = cm[i, i] / np.sum(cm[i])
class_accuracy_list.append(acc)
print("Class", i, "Accuracy:", acc)
overall_acc = np.sum(np.diag(cm)) / np.sum(cm)
print("Overall Accuracy:", overall_acc)
```
这里加入了一个 `overall_acc` 变量,用于计算整体准确率。同时,在循环中计算每个类别的准确率,并将其存储在 `class_accuracy_list` 列表中。最后输出整体准确率和每个类别的准确率。
阅读全文