将以下代码转换为python:a = min(fitness(:,1));
时间: 2024-04-11 08:28:50 浏览: 65
以下是将给定代码转换为Python的结果:
```python
import numpy as np
a = np.min(fitness[:, 0])
```
在上述代码中,假设 `fitness` 是一个包含适应度值的数组。`np.min(fitness[:, 0])` 返回适应度值中的最小值,并将其赋值给变量 `a`。
相关问题
将以下代码转换为python:%精英替换 indexworst=find(fitness==max(fitness)); if length(indexworst)>1 indexworst=randsample(indexworst,1); end GApop1(indexworst,:)=elite(gen-1,:); fitness(indexworst,1)=elitefit(gen-1,:); fitness1=1./fitness; %精英保留 indexmin=find(fitness==min(fitness)); if length(indexmin)>1 indexmin=randsample(indexmin,1); end elite(gen,:)=GApop1(indexmin,:); %费用最小,适应度最大个体序号为indexmin elitefit(gen,:)=fitness(indexmin,:); bestfit(gen,1)=min(fitness); indexmin=find(fitness==min(fitness)); if length(indexmin)>1 indexmin=randsample(indexmin,1); end bestChrom(gen,:)=GApop1(indexmin,:); bestT(gen,:)=ztime(GApop1(indexmin,:),M,N,Tn0,Tn1,Q,ST0); bestT(gen,1) GApop0=GApop1; end bestindividual=bestChrom(maxgen,:) best=bestfit(maxgen,1) % plot(bestfit,'MarkerFaceColor','red','LineWidth',1); hold on set(gca,'color','none'); plot(bestfit(2:maxgen),'k','LineWidth',1); title('收敛曲线图(每一代最优费用)'); ylabel('最优费用'); xlabel('迭代次数'); toc;
```
indexworst = np.where(fitness == np.max(fitness))[0]
if len(indexworst) > 1:
indexworst = np.random.choice(indexworst, 1)
GApop1[indexworst[0], :] = elite[gen-1, :]
fitness[indexworst[0], 0] = elitefit[gen-1, 0]
fitness1 = 1 / fitness
indexmin = np.where(fitness == np.min(fitness))[0]
if len(indexmin) > 1:
indexmin = np.random.choice(indexmin, 1)
elite[gen, :] = GApop1[indexmin[0], :]
elitefit[gen, :] = fitness[indexmin[0], :]
bestfit[gen, 0] = np.min(fitness)
indexmin = np.where(fitness == np.min(fitness))[0]
if len(indexmin) > 1:
indexmin = np.random.choice(indexmin, 1)
bestChrom[gen, :] = GApop1[indexmin[0], :]
bestT[gen, :] = ztime(GApop1[indexmin[0], :], M, N, Tn0, Tn1, Q, ST0)
bestT[gen, 0]
GApop0 = GApop1
bestindividual = bestChrom[maxgen, :]
best = bestfit[maxgen, 0]
plt.plot(bestfit, markerfacecolor='red', linewidth=1)
plt.hold(True)
plt.gca().set_color('none')
plt.plot(bestfit[1:maxgen], 'k', linewidth=1)
plt.title('收敛曲线图(每一代最优费用)')
plt.ylabel('最优费用')
plt.xlabel('迭代次数')
plt.show()
```
将以下代码转换为python:for i=1:GSAmaxgen tonefor0=cputime; i for j=1:popsize fitness(j,1)=funt(Q,pr0,GSApop0(j,:),M,NM,BL,N,L,pre,f,AT,l); fitness(j,2)=func(GSApop0(j,:),M,NM,N,LCR); end averfit=sum(fitness(:,1))/popsize; elitefit=min(fitness(:,1)); FIT=[elitefit,averfit];
以下是将给定代码转换为Python的结果:
```python
import time
import numpy as np
GSAmaxgen = 100
popsize = 10
Q = ...
pr0 = ...
GSApop0 = np.zeros((popsize, (M+NM)*N+M))
M = ...
NM = ...
BL = ...
N = ...
L = ...
pre = ...
f = ...
AT = ...
l = ...
LCR = ...
for i in range(1, GSAmaxgen+1):
tonefor0 = time.process_time()
print(i)
fitness = np.zeros((popsize, 2))
for j in range(popsize):
fitness[j, 0] = funt(Q, pr0, GSApop0[j, :], M, NM, BL, N, L, pre, f, AT, l)
fitness[j, 1] = func(GSApop0[j, :], M, NM, N, LCR)
averfit = np.sum(fitness[:, 0]) / popsize
elitefit = np.min(fitness[:, 0])
FIT = [elitefit, averfit]
```
请注意,我在代码中给出的 `Q`、`pr0`、`BL`、`L`、`pre`、`f`、`AT`、`l` 和 `LCR` 是未定义的变量。你需要根据实际情况进行定义和赋值。
阅读全文