逻辑回归 极大似然估计
时间: 2023-11-21 13:49:54 浏览: 158
5. 逻辑回归(logistic regression)的本质——极大似然估计 - zjuPeco的博客 - CSDN博客1
逻辑回归的极大似然估计是一种常用的参数估计方法。它基于最大化观测数据出现的概率,从而寻找最合适的模型参数。具体来说,逻辑回归通过假设数据服从二项分布,并利用最大似然估计的原理来推导出参数的估计值。
在逻辑回归中,我们假设观测数据的标签服从二项分布,即每个样本点的标签只有两种可能的取值(例如0和1)。通过对观测数据的似然函数进行最大化,我们可以得到对应的参数估计值。具体来说,逻辑回归使用sigmoid函数将线性模型的输出转化为[0, 1]之间的概率值,然后利用最大似然估计方法来求解使得观测数据出现概率最大的参数值。
阅读全文