DBN python代码实现回归预测
时间: 2023-10-22 21:04:31 浏览: 250
基于BP神经网络的数据回归预测Python代码 使用excel数据集 numpy实现
5星 · 资源好评率100%
DBN(Deep Belief Network)是一种深度学习模型,用于无监督学习和特征学习。在Python中,可以使用Theano和Pylearn2库来实现DBN。下面是一个简单的DBN回归预测的Python代码示例:
```python
import numpy as np
import theano
import theano.tensor as T
import pylearn2
from pylearn2.models import dbn
from pylearn2.models.mlp import Sigmoid, Linear
from pylearn2.training_algorithms import sgd
# 创建训练数据和标签
train_data = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
train_labels = np.array([3, 7, 11, 15])
# 转换为Theano共享变量
train_data = theano.shared(train_data)
train_labels = theano.shared(train_labels)
# 创建DBN模型
hidden_layer_sizes = [10, 10] # 隐藏层大小
layers = []
for i in range(len(hidden_layer_sizes)):
if i == 0:
input_size = train_data.get_value().shape[1]
layer_input = train_data
else:
input_size = hidden_layer_sizes[i-1]
layer_input = layers[-1].h
layer = dbn.HiddenLayer(
input_size=input_size,
output_size=hidden_layer_sizes[i],
activation=Sigmoid()
)
layers.append(layer)
output_layer = dbn.HiddenLayer(
input_size=hidden_layer_sizes[-1],
output_size=1,
activation=Linear()
)
layers.append(output_layer)
# 定义DBN模型
dbn_model = dbn.DBN(layers)
# 定义训练算法
trainer = sgd.SGD(
learning_rate=0.1,
batch_size=1,
learning_rule=sgd.Momentum(0.9)
)
# 训练DBN模型
trainer.setup(dbn_model, train_data)
trainer.train(dataset=train_data, targets=train_labels)
# 使用训练好的模型进行预测
test_data = np.array([[9, 10]])
test_data = theano.shared(test_data)
prediction = dbn_model.fprop(test_data)
print("预测结果:", prediction.eval())
```
阅读全文