The size of tensor a (60) must match the size of tensor b (56) at non-singleton dimension 3
时间: 2023-12-13 10:30:37 浏览: 230
这个错误是由于在YOLOV5中,两个张量的大小不匹配导致的。具体来说,张量a的大小为60,而张量b的大小为56,这在第3个非单例维度上不匹配。这通常是由于模型的输入数据与期望的输入数据大小不匹配导致的。解决这个问题的方法是确保输入数据的大小与模型期望的输入数据大小相匹配。另外,也可以尝试使用最新版本的YOLOV5或者替换掉yolov5s.pt文件来解决这个问题。
相关问题
The size of tensor a (10) must match the size of tensor b (3) at non-singleton dimension 1
The error message "The size of tensor a (10) must match the size of tensor b (3) at non-singleton dimension 1" indicates that the dimensions of tensor a and tensor b do not match at dimension 1, which prevents the operation from being completed. It seems that the number of elements in tensor a at dimension 1 is 10, while the number of elements in tensor b at dimension 1 is 3.
To fix this issue, you can either resize one of the tensors to match the other tensor's dimension at dimension 1, or reshape one of the tensors to have a different number of dimensions.
Here are some possible solutions:
1. Reshape tensor a: You can reshape tensor a to match the number of elements in tensor b at dimension 1. For example, if tensor a has a shape of (10, 5) and tensor b has a shape of (3, 5), you can reshape tensor a to have a shape of (3, 2, 5) using the reshape() function.
2. Resize tensor b: Alternatively, you can resize tensor b to match the number of elements in tensor a at dimension 1. For example, if tensor a has a shape of (10, 5) and tensor b has a shape of (3, 5), you can resize tensor b to have a shape of (10, 5) using the resize() function.
3. Verify the input data: Double-check the input data for tensor a and tensor b to ensure that they have the correct dimensions and sizes.
The size of tensor a (80) must match the size of tensor b (56) at non-singleton dimension 3
这个错误是由于张量a和张量b的尺寸不匹配导致的。根据引用和引用的信息,张量a的尺寸为80,而张量b的尺寸为56。在维度3上,它们的尺寸必须匹配,即80和56必须相等。否则,就会触发这个错误。
解决这个问题的方法有多种,具体取决于你的代码和应用场景。引用提供了一种可能的解决方案,但没有提供具体的细节。你可以尝试以下几种方法来解决这个问题:
1. 检查你的代码中涉及到张量a和张量b的部分,确保它们的维度和尺寸是一致的。
2. 如果你使用的是预训练模型,确保输入数据的尺寸与模型期望的尺寸相匹配。
3. 如果你在自定义模型或网络中使用了这些张量,可以考虑调整模型的结构或处理方法,以确保张量的尺寸一致。
总之,你需要仔细检查你的代码,并确保所有涉及到张量a和张量b的操作都具有一致的尺寸。这样就可以避免这个错误的发生。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [yolov5-5.0编译时存在问题](https://blog.csdn.net/chlyrx/article/details/125693973)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *3* [RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton](https://blog.csdn.net/weixin_44363167/article/details/123618125)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文