subplot(2,1,1); plot(fm, Zp_mag,'r*'); hold on; subplot(2,1,2); plot(fm, Zp_angle,'r*'); hold on; subplot(2,1,1); plot(fm, Zn_mag,'ro'); hold on; subplot(2,1,2); plot(fm, Zn_angle,'ro'); hold on;

时间: 2024-04-21 19:25:13 浏览: 99
这段代码使用了 `subplot` 函数创建了一个 2x1 的子图布局,并分别绘制了红色星号和红色圆圈的数据。 首先,在第一个子图中,使用 `subplot(2,1,1)` 将当前 axes 设置为第一个子图,然后使用 `plot` 函数绘制了 `fm` 和 `Zp_mag` 数据的散点图,颜色为红色星号。接着使用 `hold on` 保持绘图状态,以便在同一个子图上绘制其他数据。 然后,在第二个子图中,使用 `subplot(2,1,2)` 将当前 axes 设置为第二个子图,使用 `plot` 函数绘制了 `fm` 和 `Zp_angle` 数据的散点图,颜色同样为红色星号。同样地,使用 `hold on` 保持绘图状态。 接着,又回到第一个子图中,使用 `subplot(2,1,1)` 将当前 axes 设置为第一个子图,使用 `plot` 函数绘制了 `fm` 和 `Zn_mag` 数据的散点图,颜色为红色圆圈。再次使用 `hold on` 保持绘图状态。 最后,在第二个子图中,使用 `subplot(2,1,2)` 将当前 axes 设置为第二个子图,使用 `plot` 函数绘制了 `fm` 和 `Zn_angle` 数据的散点图,颜色同样为红色圆圈。最后再次使用 `hold on` 保持绘图状态。 这样,就在两个子图中分别绘制了红色星号和红色圆圈的数据。
相关问题

clear;clear;clc; fs = 8000; % 采样频率 t = 0:1/fs:1 ;% 采样时间 f = 2000; % 方波信号频率 x = square(2*pi*f*t); % 生成方波信号 N = length(x)-1; % 信号长度保证为正整数 % 计算基4FFT和频谱 X = fft(x, N/4); X_mag = abs(X); X_mag_norm = X_mag / max(X_mag); % 计算谐波失真度和谐波的归一化振幅 harmonics = 5; % 要计算的谐波次数 thd = 0; harmonic_amp_norm = zeros(1, harmonics); for k = 1:harmonics harmonic_amp_norm(k) = X_mag_norm(k*4+1); thd = thd + harmonic_amp_norm(k)^2; end thd = sqrt(thd) / harmonic_amp_norm(1) * 10; %打印失真度和归一化振幅图像 fprintf('前5个谐波分量的归一化振幅为:\n'); fprintf('%f\n', harmonic_amp_norm); fprintf('总谐波失真度:\n'); fprintf('%f\n',thd ); % 生成失真度和归一化振幅图像 figure(); subplot(211); stem(0:harmonics-1, harmonic_amp_norm); title('谐波振幅 (归一化)'); xlabel('谐波数'); ylabel('振幅'); subplot(212); plot(X_mag_norm); title(sprintf('总谐波失真度:THD = %.2f%%', thd)); xlabel('0~2000频率'); ylabel('振幅'); %生成dat文件 fid = fopen('C:\ti\myprojects\11\week2.dat','w'); fprintf(fid,'1651 2 0x8000 8000\n'); fprintf(fid,'%d\n',floor(x(1:N)*4095)); fclose(fid);通过生成的dat文件生成ccs中的C语言

您可以使用以下的 C 语言代码将生成的 `week2.dat` 文件读入到数组中,然后将数组中的数据写入到 DAC 寄存器中,以实现方波信号的输出: ```c #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <stdbool.h> #include <math.h> #define SAMPLE_RATE 8000 #define MAX_AMPLITUDE 4095 // 读取文件中的数据,并将数据存储到数组中 bool loadDataFromFile(const char* filename, int16_t* data, uint32_t size) { FILE* file = fopen(filename, "r"); if (file == NULL) { printf("Failed to open file %s\n", filename); return false; } // 读取文件头 int16_t header[4]; if (fread(header, sizeof(int16_t), 4, file) != 4) { printf("Failed to read file header\n"); fclose(file); return false; } // 检查文件头是否合法 if (header[0] != 1651 || header[1] != 2) { printf("Invalid file header\n"); fclose(file); return false; } // 读取数据 for (uint32_t i = 0; i < size; i++) { int16_t value; if (fscanf(file, "%hd", &value) != 1) { printf("Failed to read data at index %d\n", i); fclose(file); return false; } data[i] = value; } fclose(file); return true; } void main(void) { // 读取数据 const char* filename = "C:\\ti\\myprojects\\11\\week2.dat"; uint32_t dataSize = 8000; int16_t data[dataSize]; if (!loadDataFromFile(filename, data, dataSize)) { return; } // 输出数据 for (uint32_t i = 0; i < dataSize; i++) { // 将数据缩放到 DAC 可以接受的范围 int16_t value = data[i] / 4095.0f * MAX_AMPLITUDE + MAX_AMPLITUDE; // 输出到 DAC 寄存器 // TODO: 将 value 输出到 DAC 寄存器 } } ``` 在代码中,`loadDataFromFile` 函数用于读取文件中的数据,并将数据存储到数组中。`main` 函数中,首先读取 `week2.dat` 文件中的数据,然后对数据进行缩放,最后将数据输出到 DAC 寄存器中。由于不清楚您使用的具体的 DSP 芯片型号和开发板类型,因此无法提供具体的输出代码。您需要根据您的硬件和软件条件进行相应的修改,以实现数据的输出。

from scipy import signal import numpy as np import matplotlib.pyplot as plt plt.rcParams["font.family"] = 'Arial Unicode MS' original_sig = np.loadtxt("resources/unbalanced.txt") original_sig -= np.mean(original_sig) N = len(original_sig) pi = np.pi f2_jw = np.fft.fft(original_sig) f2_jw = np.fft.fftshift(f2_jw) jw_list = [complex(0, 1) * 2 * pi / N * item for item in np.linspace(-N/2, N/2, N, endpoint=False)] f1_jw = [] for i, (item1, item2) in enumerate(zip(f2_jw, jw_list)): if abs(item2) != 0: f1_jw.append(item1/item2) else: f1_jw.append(complex(0, 0)) f1_jw = np.array(f1_jw) * 1000 # m到mm的量纲转换 f1_jw = np.fft.ifftshift(f1_jw) vel_sig = np.fft.ifft(f1_jw).real fs = 8192 dt = 1/fs vel_sig *= dt # 实际采样频率为8192而非1,因此积分结果要乘以dt t_axis = [i * dt for i in range(len(original_sig))] result = signal.detrend(vel_sig) plt.figure(figsize=(12, 3)) plt.subplot(121) plt.plot(t_axis, vel_sig, label="频域积分计算得到的速度信号") plt.legend(loc="upper right") plt.subplot(122) plt.plot(t_axis, result, label="频域积分后去趋势得到的速度信号") plt.legend(loc="upper right") plt.show()将这段代码使用C语言进行编写,原始样本长度为512,为实数,在进行FFT处理之前,原始样本以一维数组表示复数,实部与虚部交替存在,虚部全部设置为0,FFT函数调用DSP库中的arm_cfft_f32函数

根据您提供的Python代码,我编写了相应的C语言代码,其中使用arm_cfft_f32函数进行FFT计算,并使用arm_rfft_f32函数进行实数FFT计算。同时,由于原始样本以一维数组表示复数,实部与虚部交替存在,虚部全部设置为0,因此在进行FFT计算时,需要将原始样本的虚部设置为0。具体实现如下: ```c #include "arm_math.h" #include <stdio.h> #define N 512 int main() { // 读取原始样本 float original_sig[N]; FILE *fp = fopen("resources/unbalanced.txt", "r"); for (int i = 0; i < N; ++i) { fscanf(fp, "%f", &original_sig[i]); } fclose(fp); // 去趋势 arm_mean_f32(original_sig, N, &mean); for (int i = 0; i < N; ++i) { original_sig[i] -= mean; } // 使用一维数组表示复数,实部与虚部交替存在,虚部全部设置为0 float complex_sig[2 * N]; for (int i = 0; i < N; ++i) { complex_sig[2 * i] = original_sig[i]; complex_sig[2 * i + 1] = 0; } // 进行FFT arm_cfft_f32(&arm_cfft_sR_f32_len512, complex_sig, 0, 1); arm_cmplx_mag_f32(complex_sig, original_sig, N); // 进行频域积分 float jw_list[N]; float dt = 1.0 / 8192; for (int i = 0; i < N; ++i) { if (i < N / 2) { jw_list[i] = 2 * ARM_PI / N * (i - N / 2); } else { jw_list[i] = 2 * ARM_PI / N * (i - N / 2); } } for (int i = 0; i < N; ++i) { if (i == 0) { complex_sig[2 * i] = 0; complex_sig[2 * i + 1] = 0; } else { complex_sig[2 * i] /= jw_list[i]; complex_sig[2 * i + 1] /= jw_list[i]; } } // 进行实数FFT计算 arm_rfft_instance_f32 rfft; arm_rfft_init_f32(&rfft, N, 0, 1); arm_rfft_f32(&rfft, complex_sig, original_sig); // 转换为速度信号 for (int i = 0; i < N; ++i) { original_sig[i] /= (2 * ARM_PI * (i == 0 ? 1 : jw_list[i])); original_sig[i] *= 1000; // m到mm的量纲转换 original_sig[i] *= dt; // 实际采样频率为8192而非1,因此积分结果要乘以dt } // 去趋势 float mean; arm_mean_f32(original_sig, N, &mean); arm_offset_f32(original_sig, -mean, original_sig, N); // 输出结果 for (int i = 0; i < N; ++i) { printf("%f\n", original_sig[i]); } return 0; } ``` 需要注意的是,由于实数FFT计算得到的结果是对称的,因此在进行频域积分时,需要将虚部全部设置为0,并且jw_list需要进行特殊处理以保证积分结果的正确性。另外,为了方便计算,此处使用了arm_cmplx_mag_f32函数计算FFT的模值,而非手动计算模值。
阅读全文

相关推荐

clear all; clc; X1=0;X2=0;X3=1; m=350; %重复50遍的7位单极性m序列 for i=1:m Y1=X1; Y2=X2; Y3=X3; X3=Y2; X2=Y1; X1=xor(Y3,Y1); L(i)=Y1; end for i=1:m M(i)=1-2*L(i); %将单极性m序列变为双极性m序列 end k=1:1:m; figure(1) subplot(2,1,1) %做m序列图 stem(k-1,M); axis([0,7,-1,1]); xlabel('k'); ylabel('M序列'); title('双极性7位M序列') ; subplot(2,1,2) ym=fft(M,4096); magm=abs(ym); %求双极性m序列频谱 fm=(1:2048)*200/2048; plot(fm,magm(1:2048)*2/4096); title('双极性7位M序列的频谱') %% 二进制信息序列 N=50;a=0; x_rand=rand(1,N); %产生50个0与1之间随机数 for i=1:N if x_rand(i)>=0.5 %大于等于0.5的取1,小于0.5的取0 x(i)=1;a=a+1; else x(i)=0; end end t=0:N-1; figure(2) %做信息码图 subplot(2,1,1) stem(t,x); title('扩频前待发送二进制信息序列'); tt=0:349; subplot(2,1,2) L=1:7*N; y=rectpulse(x,7) s(L)=0; for i=1:350 %扩频后,码率变为100/7*7=100Hz s(i)=xor(L(i),y(i)); end tt=0:7*N-1; stem(tt,s); axis([0,350,0,1]); title('扩频后的待发送序列码'); %% BPSK调制波形 figure(3) subplot(2,1,2) fs=2000; ts=0:0.00001:3.5-0.00001;%为了使信号看起来更光滑,作图时采样频率为100kHz % ps=cos(2*pi*fs*ts); s_b=rectpulse(s,1000); %将冲激信号补成矩形信号 s_bpsk=(1-2.*s_b).*cos(2*pi*fs*ts);%扩频后信号BPSK调制时域波形,(1-2.*s_b)是1,-1序列 plot(ts,s_bpsk); xlabel('s'); axis([0.055,0.085,-1.2,1.2]) title('扩频后bpsk信号时域波形'); subplot(2,1,1) s_bb=rectpulse(x,7000); s_bpskb=(1-2.*s_bb).*cos(2*pi*fs*ts);%无扩频信号BPSK调制时域波形 plot(ts,s_bpskb); xlabel('s'); axis([0.055,0.085,-1.2,1.2]); title('扩频前bpsk信号时域波形') %% BPSK调制频谱 figure(4) N=400000; ybb=fft(s_bpskb,N); %无扩频信号BPSK调制频谱 magb=abs(ybb); fbb=(1:N/2)*100000/N; subplot(2,1,1) plot(fbb,magb(1:N/2)*2/N); axis([1700,2300,0,0.8]); title('扩频前调制信号频谱图'); xlabel('Hz'); subplot(2,1,2) yb=fft(s_bpsk,N); %扩频信号BPSK调制频谱 mag=abs(yb); fb=(1:N/2)*100000/N; plot(fb,mag(1:N/2)*2/N); axis([1700,2300,0,0.8]); title('扩频后调制信号频谱图'); xlabel('Hz');

分析如下代码;clear;clc; % 滤波器要求 wp = 2*pi*10e3; % 通带截止频率 ws = 2*pi*12e3; % 阻带起始频率 Rp = 0.5; % 通带最大衰减 Rs = 30; % 阻带最小衰减 % 计算滤波器参数 [n, wn] = buttord(wp, ws, Rp, Rs, 's'); % 巴特沃斯滤波器的阶数和截止频率 [b, a] = butter(n, wn, 's'); % 巴特沃斯滤波器的分子和分母 % 绘制幅频响应曲线 w = linspace(0, 2*pi*20000, 1000); [h, f] = freqs(b, a, w); mag = 20*log10(abs(h));%dB phase = angle(h); figure; subplot(2,1,1);plot(f/(2*pi), mag);title('低通Butterworth滤波器幅频特性');xlabel('频率(Hz)');ylabel('幅度响应(dB)'); subplot(2,1,2);plot(f/(2*pi), phase);title('低通Butterworth滤波器相频特性');xlabel('频率(Hz)');ylabel('相位(度)'); % 输出滤波器参数 disp('滤波器阶数:');disp(n); disp('滤波器截止频率(Hz):');disp(wn/(2*pi)); % 双线性变换法 % 计算规格化频率 wp_norm = wp/(2*pi); ws_norm = ws/(2*pi); % 计算滤波器阶数 [n, Wn] = buttord(wp_norm, ws_norm, Rp, Rs, 's'); % 计算模拟Butterworth滤波器的分母和分子多项式系数 [b, a] = butter(n, Wn, 's'); % 采样频率 fs = 2*wp; [bz, az] = bilinear(b, a, fs); %频率响应 [H, w] = freqz(bz, az, 1024); f = w/(2*pi)*fs; H_db = 20*log10(abs(H)); % 绘制幅频特性 figure; subplot(2,1,1);plot(f, H_db);title('低通Butterworth滤波器幅频特性');xlabel('频率(Hz)');ylabel('幅度响应(dB)'); % 绘制相频特性 phi = unwrap(angle(H))*180/pi; subplot(2,1,2);plot(f, phi);title('低通Butterworth滤波器相频特性');xlabel('频率(Hz)');ylabel('相位(度)');

最新推荐

recommend-type

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx
recommend-type

基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)

基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计),个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做大作业和毕业设计的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计),基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Matlab的CNN神经网络算法实现MNIST手写字体识别项目源码+文档说明(毕业设计)基于Mat个人经导师指导并认可通过的高分毕业设计项目,评审分98分。主要针对计算机相关专业的正在做大作业和毕业设计的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PROTEUS符号定制指南:个性化元件创建与修改的全面攻略

![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号
recommend-type

https://www.lagou.com/wn/爬取该网页职位名称,薪资待遇,学历,企业类型,工作地点数据保存为CSV文件的python代码

首先,你需要使用Python的requests库来获取网页内容,然后使用BeautifulSoup解析HTML,提取所需信息。由于这个链接指向的是拉勾网的搜索结果页面,通常这类网站会有反爬虫机制,所以你可能需要设置User-Agent,模拟浏览器访问,并处理可能的登录验证。 以下是一个基本的示例,注意这只是一个基础模板,实际操作可能需要根据网站的具体结构进行调整: ```python import requests from bs4 import BeautifulSoup import csv # 模拟浏览器头信息 headers = { 'User-Agent': 'Mozi