AssertionError: train: No labels found in E:\resource\develop\python\dataset.yolo.v5\test\data\labels.cache
时间: 2024-01-07 18:23:46 浏览: 148
根据提供的引用内容,出现了一个AssertionError错误,错误信息为"No labels found in E:\resource\develop\python\dataset.yolo.v5\test\data\labels.cache"。这个错误通常表示在指定路径下的标签缓存文件中没有找到标签。
为了解决这个问题,你可以尝试以下方法:
1. 确保标签缓存文件存在:检查指定路径下的标签缓存文件是否存在,并确保文件名和路径都是正确的。
2. 检查标签文件格式:确认标签文件的格式是否正确。通常情况下,标签文件应该是一个文本文件,每行包含一个标签。
3. 检查标签文件内容:打开标签文件,检查文件中是否包含有效的标签。确保每个标签都是正确的,并且每个标签都位于单独的一行。
4. 检查标签文件路径:如果你在代码中指定了标签文件的路径,请确保路径是正确的,并且可以正确访问到标签文件。
5. 检查文件权限:确保你对标签文件具有读取权限。如果没有权限,可以尝试更改文件权限或者使用管理员权限运行程序。
如果以上方法都没有解决问题,可能需要进一步检查代码逻辑或者查看相关文档或资源以获取更多帮助。
相关问题
AssertionError: train: No labels found in E:\NICE\TEST\labels\train.cache, can not start training.
根据提供的引用内容,出现"AssertionError: train: No labels found in E:\NICE\TEST\labels\train.cache, can not start training"错误是因为在指定路径下的训练标签文件(train.cache)中没有找到标签。解决这个问题的方法如下:
1. 确保训练标签文件存在并位于指定路径下(E:\NICE\TEST\labels\train.cache)。检查文件名和路径是否正确。
2. 检查训练标签文件(train.cache)的内容是否正确。确保每个样本都有相应的标签。
3. 检查数据集配置文件(VOC.yaml)是否正确配置了训练标签文件的路径。确保路径与实际路径一致。
4. 检查模型配置文件(yolov5s.yaml)是否正确配置了数据集和标签信息。确保数据集和标签的相关配置正确。
如果以上方法都没有解决问题,可以尝试以下操作:
5. 检查训练数据集是否完整,包括图像和标签文件。确保图像和标签文件的对应关系正确。
6. 检查训练数据集的格式是否符合要求。确保数据集的格式与模型要求的格式一致。
7. 检查训练代码中是否有其他错误或缺失的依赖项。确保代码的正确性和完整性。
请注意,以上方法仅为常见解决方案,具体解决方法可能因个人情况而异。如果问题仍然存在,请提供更多详细信息以便进一步帮助解决。
AssertionError: train: No labels found in D:\YOLO\datasets\Armor\labels\1.cache, can not start training.
这个错误提示表明在训练YOLO模型时,找不到训练数据集中的标签文件。解决这个问题的方法如下:
1. 确认标签文件是否存在,标签文件应该与图像文件在同一目录下,且文件名相同,只是扩展名不同。标签文件的扩展名通常为.txt,每个文件应包含与其对应的图像文件中所有对象的标签信息。
2. 确认标签文件的格式是否正确。YOLO模型要求标签文件的格式为每行一个对象,每行包含对象的类别和位置信息。位置信息应该是相对于图像宽度和高度的归一化坐标,即左上角和右下角的坐标值应该在0到1之间。
3. 确认训练脚本中的数据集路径和标签文件路径是否正确。如果数据集路径或标签文件路径不正确,就会导致找不到标签文件的错误。
4. 修改datasets.py文件。在该文件中,需要将标签文件的路径替换为正确的路径。具体来说,需要将datasets.py文件中的JPEGImages替换为标签文件所在的目录。
以下是修改后的datasets.py文件的示例代码:
```python
import glob
import os
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
cache_images=False, single_cls=False):
path = str(Path(path)) # os-agnostic
assert os.path.isfile(path), f'File not found {path}'
with open(path, 'r') as f:
self.img_files = [x.replace('\n', '') for x in f.readlines() if os.path.isfile(x.replace('\n', ''))]
assert self.img_files, f'No images found in {path}'
self.label_files = [x.replace('images', 'labels').replace('.png', '.txt').replace('.jpg', '.txt')
.replace('.jpeg', '.txt') for x in self.img_files]
self.img_size = img_size
self.batch_size = batch_size
self.augment = augment
self.hyp = hyp
self.rect = rect
self.image_weights = image_weights
self.cache_images = cache_images
self.single_cls = single_cls
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
img_path = self.img_files[index % len(self.img_files)].rstrip()
label_path = self.label_files[index % len(self.img_files)].rstrip()
# Load image
img = None
if self.cache_images: # option 1 - caches small/medium images
img = self.imgs[index % len(self.imgs)]
if img is None: # option 2 - loads large images on-the-fly
img = Image.open(img_path).convert('RGB')
if self.cache_images:
if img.size[0] < 640 or img.size[1] < 640: # if one side is < 640
img = img.resize((640, 640)) # resize
self.imgs[index % len(self.imgs)] = img # save
assert img.size[0] > 9, f'Width must be >9 pixels {img_path}'
assert img.size[1] > 9, f'Height must be >9 pixels {img_path}'
# Load labels
targets = None
if os.path.isfile(label_path):
with open(label_path, 'r') as f:
x = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
# Normalized xywh to pixel xyxy format
labels = x.copy()
if x.size > 0:
labels[:, 1] = x[:, 1] * img.width # xmin
labels[:, 2] = x[:, 2] * img.height # ymin
labels[:, 3] = x[:, 3] * img.width # xmax
labels[:, 4] = x[:, 4] * img.height # ymax
labels[:, 1:5] = xywh2xyxy(labels[:, 1:5]) # xywh to xyxy
targets = torch.zeros((len(labels), 6))
targets[:, 1:] = torch.from_numpy(labels)
# Apply augmentations
if self.augment:
img, targets = random_affine(img, targets,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
border=self.img_size // 2) # border to remove
# Letterbox
img, ratio, pad = letterbox(img, new_shape=self.img_size, auto=self.rect, scaleup=self.augment,
stride=self.hyp['stride'])
targets[:, 2:6] = xyxy2xywh(targets[:, 2:6]) / self.img_size / ratio # normalized xywh (to grid cell)
# Load into tensor
img = np.array(img).transpose(2, 0, 1) # HWC to CHW
img = torch.from_numpy(img).to(torch.float32) # uint8 to fp16/32
targets = targets[torch.where(targets[:, 0] == index % len(self.img_files))] # filter by image index
return img, targets, index, img_path
def coco_index(self, index):
"""Map dataset index to COCO index (minus 1)"""
return int(Path(self.img_files[index]).stem) - 1
@staticmethod
def collate_fn(batch):
img, label, _, path = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path
class LoadImages(Dataset): # for inference
def __init__(self, path, img_size=640, stride=32, auto=True):
path = str(Path(path)) # os-agnostic
if os.path.isdir(path):
files = sorted(glob.glob('%s/*.*' % path))
elif os.path.isfile(path):
files = [path]
else:
raise Exception(f'Error: {path} does not exist')
images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
ni, nv = len(images), len(videos)
self.img_size = img_size
self.stride = stride
self.auto = auto
self.video_flag = [False] * ni + [True] * nv
self.img_files = images + videos
self.cap = [cv2.VideoCapture(x) for x in videos]
self.frame = [None] * nv
self.ret = [False] * nv
self.path = path
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
if self.video_flag[index]:
return self.load_video(index)
else:
return self.load_image(index)
def load_image(self, index):
img_path = self.img_files[index]
img = cv2.imread(img_path) # BGR
assert img is not None, 'Image Not Found ' + img_path
h0, w0 = img.shape[:2] # orig hw
img = letterbox(img, new_shape=self.img_size, auto=self.auto)[0]
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return torch.from_numpy(img), index, img_path, (h0, w0)
def load_video(self, index):
cap = self.cap[index]
while True:
self.ret[index], frame = cap.read()
if not self.ret[index]:
break
if self.frame[index] is None:
self.frame[index] = letterbox(frame, new_shape=self.img_size, auto=self.auto)[0]
self.frame[index] = self.frame[index][:, :, ::-1].transpose(2, 0, 1)
self.frame[index] = np.ascontiguousarray(self.frame[index])
else:
self.frame[index] = torch.cat((self.frame[index][self.stride:], letterbox(frame, new_shape=self.img_size,
auto=self.auto)[0]), 0)
if self.ret[index]:
return self.frame[index], index, self.img_files[index], frame.shape[:2]
def __del__(self):
if hasattr(self, 'cap'):
for c in self.cap:
c.release()
def letterbox(img, new_shape=640, color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
ratio = float(new_shape) / max(shape)
else:
ratio = min(float(new_shape[0]) / shape[0], float(new_shape[1]) / shape[1])
if ratio != 1: # always resize down, only resize up if shape < new_shape * 1.5
if scaleup or (ratio < 1 and max(shape) * ratio > stride * 1.5):
interp = cv2.INTER_LINEAR
if ratio < 1:
img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp)
else:
img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp)
else:
interp = cv2.INTER_AREA
img = cv2.resize(img, (int(round(shape[1] * ratio)), int(round(shape[0] * ratio))), interpolation=interp)
new_shape = [round(shape[1] * ratio), round(shape[0] * ratio)]
# Compute stride-aligned boxes
if auto:
stride = int(np.ceil(new_shape[0] / stride) * stride)
top_pad = (stride - new_shape[0]) % stride # add top-padding (integer pixels only)
left_pad = (stride - new_shape[1]) % stride # add left-padding (integer pixels only)
if top_pad or left_pad:
img = cv2.copyMakeBorder(img, top_pad // 2, top_pad - top_pad // 2, left_pad // 2, left_pad - left_pad // 2,
cv2.BORDER_CONSTANT, value=color) # add border
else:
stride = 32
top_pad, left_pad = 0, 0
# Pad to rectangular shape divisible by stride
h, w = img.shape[:2]
if scaleFill or new_shape == (w, h): # scale-up width and height
new_img = np.zeros((new_shape[1], new_shape[0], 3), dtype=np.uint8) + color # whole image
nh, nw = h, w
else: # scale width OR height
nh = new_shape[1] - top_pad
nw = new_shape[0] - left_pad
assert nh > 0 and nw > 0, 'image size < new_size'
new_img = np.zeros((new_shape[1], new_shape[0], 3), dtype=np.uint8) + color # whole image
if nw / w <= nh / h: # resize by width, then pad height
new_w = new_shape[0]
new_h = int(nh * new_w / nw)
assert new_h > 0, 'image size < new_size'
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
top = top_pad // 2
bottom = top_pad - top
left = left_pad // 2
right = left_pad - left
new_img[top:top + new_h, left:left + new_w] = img
else: # resize by height, then pad width
new_h = new_shape[1]
new_w = int(nw * new_h / nh)
assert new_w > 0, 'image size < new_size'
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
top = top_pad // 2
bottom = top_pad - top
left = left_pad // 2
right = left_pad - left
new_img[top:top + new_h, left:left + new_w] = img
return new_img, ratio, (top_pad, left_pad)
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = x.copy() if isinstance(x, np.ndarray) else np.array(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2
y[..., 1] = x[..., 1] - x[..., 3] / 2
y[..., 2] = x[..., 0] + x[..., 2] / 2
y[..., 3] = x[..., 1] + x[..., 3] / 2
return y
def xyxy2xywh(x):
# Convert bounding
阅读全文