model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(len(model.layers)) history = model.fit(x_train, y_train, batch_size=10, epochs=20, validation_freq=1, validation_data=(x_valid, y_valid)) model.evaluate(x_test, y_test, verbose=2) history_dict = history.history print(history_dict) model.save('my_mnist_weights.h5')
时间: 2024-04-23 07:26:38 浏览: 148
cnn_tensorflow.rar_CNN_tensorflow_tensorflow cnn
这段代码是用 Keras 搭建神经网络模型来进行 MNIST 数据集的训练和测试。首先使用了 compile() 函数来配置模型,其中指定了优化器为 Adam、损失函数为 sparse_categorical_crossentropy、评价指标为准确率。接着使用 len() 函数输出了模型的层数。然后使用 fit() 函数对模型进行训练,其中指定了批次大小为 10、迭代次数为 20、每个 epoch 结束后进行一次验证,验证集为 x_valid 和 y_valid。训练结束后使用 evaluate() 函数对测试集进行评估,并输出评估结果。接着使用 history.history 输出了训练过程中的损失和准确率等指标。最后使用 save() 函数将训练好的模型保存到 my_mnist_weights.h5 文件中。
阅读全文