void sort(int l,int r, int pos) //对课程的成绩进行排序 { if (r <= l) return; int i = l, j = r; int key = students[l].scores[pos]; while (i <= j) { while (students[i].scores[pos] > key) i++; while (students[j].scores[pos] < key) j--; if (i <= j) { Student temp = students[i]; students[i] = students[j]; students[j] = temp; i++; j--; } } sort(l, j, pos); sort(i, r, pos); }

时间: 2024-04-02 13:34:18 浏览: 7
这是一个 C 语言函数 `sort()` 的定义。这个函数用于对学生数组中的某门课程成绩进行排序,具体实现采用了快速排序算法。 该函数的参数包括三个整型变量:`l`、`r` 和 `pos`,分别表示要排序的学生数组的起始索引、终止索引和要排序的课程在成绩数组中的索引。 在函数体内部,首先判断要排序的数组是否为空或只包含一个元素,如果是,则直接返回。否则,选取数组的第一个元素作为基准值 `key`,然后使用两个指针 `i` 和 `j` 分别从数组的左侧和右侧开始遍历,寻找需要交换的元素。具体来说,当 `students[i].scores[pos]` 大于 `key` 时,`i` 向右移动,当 `students[j].scores[pos]` 小于 `key` 时,`j` 向左移动,直到找到需要交换的元素。然后,将这两个元素交换位置,然后再次移动指针 `i` 和 `j`,直到它们相遇。在这个过程中,所有小于 `key` 的元素都会被交换到左侧,所有大于 `key` 的元素都会被交换到右侧。 最后,使用递归的方式对左侧和右侧的子数组进行排序,直到子数组的长度为1或0。递归过程中,会不断调用自身来对子数组进行排序,直到所有子数组都排好序为止。 需要注意的是,该函数使用了一个自定义的结构体类型 `Student`,它包含了学生的学号、姓名和多门课程的成绩。此外,该函数的实现方式是一种常用的排序算法,具有一定的普适性和实用性。
相关问题

#include<stdio.h> #include<stdlib.h> int Binary_search(int *s,int length,int key);//二分查找函数 void sort(int *s,int length);//对数组进行排序函数 int main() { int m; int i; int key; int n[100];//待排序数组 scanf("%d",&m); for(i=0;i<m;i++) scanf("%d",&n[i]); sort(n,m); printf("数据递增排序的结果:\n"); for(i=0;i<m;i++) printf("%d ",n[i]); printf("\n"); scanf("%d",&key); int pos=Binary_search(n,m,key); if(pos==-1) printf("没有找到需要查询的数据:\n"); else printf("数据%d的索引位置 %d\n",key,pos); return 0; } void sort(int *s,int length)//对数组进行排序函数 { //改进版的冒泡排序算法 递增排序 int i=length-1;//比较的次数 int j; int t; int flag=1; while(flag) { flag=0; for(j=0;j<i;j++) { if(s[j]>s[j+1]) { t=s[j]; ; s[j+1]=t;//交换数据 flag=1; } } i--; } } int Binary_search(int *s,int length,int key)//二分查找函数 { int L,H,M; L=0; H=length-1; while(L<=H) { ; if(s[M]==key) return M; if(key<s[M]) H= ; else L=M+1; } return -1; }请将下面二分查找程序补充完整。

下面是完整的二分查找程序: ```c int Binary_search(int *s, int length, int key) { int L, H, M; L = 0; H = length - 1; while (L <= H) { M = (L + H) / 2; if (s[M] == key) return M; if (key < s[M]) H = M - 1; else L = M + 1; } return -1; } ``` 二分查找的思路是:首先将待查找的区间的左端点L设为0,将右端点H设为n-1(n为数组长度),然后计算中间位置M。如果要查找的值等于s[M],则查找成功,返回M;否则,如果要查找的值小于s[M],则在左半区间继续查找;如果要查找的值大于s[M],则在右半区间继续查找。每次查找都将待查找区间缩小一半,直到找到要查找的值或者区间缩小到只有一个元素为止。如果最终没有找到要查找的值,则返回-1表示查找失败。

完善代码1.冒泡排序 2.快速排序 3.堆排序#include <iostream> #include<cstdlib> #include<Windows.h> #include<ctime> using namespace std; void randomAssign(int a[],int n){ srand(time(0)); for(int i = 0; i < n;i++) a[i] = rand()%n+1; } void print(const char* str,int a[],int n){ cout<<str<<"="; for(int i = 0; i < n; i++) cout<<a[i] <<" "; cout<<endl; } void bubbleSort(int a[],int n){ for(int i = n; i >= 1; i--) for(int j = 1; j < i; j++) if(a[j+1] > a[j]) swap(a[j+1],a[j]); } int onePartition(int a[],int left,int right){ int pivot = a[left]; int i = left; int j = right; while(i < j){ while(XXXXXXXXXXXXX;) j++; if( i < j) a[i] = a[j]; XXXXXXXXXXXXX; XXXXXXXXXXXXX; if( i < j) a[j] = a[i]; } XXXXXXXXXXXXX; return i; } void quickSort(int a[],int left,int right){ if(left >= right) return ; int pos = XXXXXXXXXXXXX;; XXXXXXXXXXXXX; quickSort(a,pos+1,right); } void quickSort(int a[],int n){ quickSort(a,0,n-1); } void sift(int a[],int pos,int n){ //n表示长度 int parent = pos; int son = parent * 2 + 1; int tmp = a[parent]; while (son <= n - 1){ // 有效下标 0...n-1 if (son + 1 <= n - 1 && a[son] < a[son + 1]) son++; if(XXXXXXXXXXXXX) return; else { XXXXXXXXXXXXX; parent = son; son = parent * 2 + 1; } } } void heapSort(int a[],int n) { int i = 0; for (i = n / 2 - 1; i >= 0; i--) //从最后一个非叶结点开始 sift(a,i,n); for (i = n-1; i> 0; i--) { swap(a[0],a[i]); XXXXXXXXXXXXX; } } typedef void(*SortFunc)(int[], int); void testSort(SortFunc sortFunc,int n = 10){ DWORD start, end; int* a = new int[n]; randomAssign(a,n); if(n < 20) print("排序前",a,n); start = GetTickCount(); sortFunc(a,n); end = GetTickCount(); if(n < 20) print("排序后",a,n); cout<<"花费时间="<<end - start<<"毫秒"<<endl<<endl; delete [] a; } int main(){ testSort(bubbleSort,10); testSort(quickSort,10); testSort(heapSort,10); return 1; }

冒泡排序、快速排序和堆排序的代码已经提供,下面是完整的代码: ```c++ #include <iostream> #include <cstdlib> #include <Windows.h> #include <ctime> using namespace std; void randomAssign(int a[], int n) { srand(time(0)); for (int i = 0; i < n; i++) a[i] = rand() % n + 1; } void print(const char* str, int a[], int n) { cout << str << "="; for (int i = 0; i < n; i++) cout << a[i] << " "; cout << endl; } void bubbleSort(int a[], int n) { for (int i = n; i >= 1; i--) for (int j = 1; j < i; j++) if (a[j + 1] > a[j]) swap(a[j + 1], a[j]); } int onePartition(int a[], int left, int right) { int pivot = a[left]; int i = left; int j = right; while (i < j) { while (a[j] >= pivot && i < j) j--; if (i < j) a[i++] = a[j]; while (a[i] <= pivot && i < j) i++; if (i < j) a[j--] = a[i]; } a[i] = pivot; return i; } void quickSort(int a[], int left, int right) { if (left >= right) return; int pos = onePartition(a, left, right); quickSort(a, left, pos - 1); quickSort(a, pos + 1, right); } void quickSort(int a[], int n) { quickSort(a, 0, n - 1); } void sift(int a[], int pos, int n) { // n表示长度 int parent = pos; int son = parent * 2 + 1; int tmp = a[parent]; while (son <= n - 1) { // 有效下标 0...n-1 if (son + 1 <= n - 1 && a[son] < a[son + 1]) son++; if (tmp >= a[son]) break; else { a[parent] = a[son]; parent = son; son = parent * 2 + 1; } } a[parent] = tmp; } void heapSort(int a[], int n) { int i = 0; for (i = n / 2 - 1; i >= 0; i--) //从最后一个非叶结点开始 sift(a, i, n); for (i = n - 1; i > 0; i--) { swap(a[0], a[i]); sift(a, 0, i); } } typedef void(*SortFunc)(int[], int); void testSort(SortFunc sortFunc, int n = 10) { DWORD start, end; int* a = new int[n]; randomAssign(a, n); if (n < 20) print("排序前", a, n); start = GetTickCount(); sortFunc(a, n); end = GetTickCount(); if (n < 20) print("排序后", a, n); cout << "花费时间=" << end - start << "毫秒" << endl << endl; delete[] a; } int main() { testSort(bubbleSort, 10); testSort(quickSort, 10); testSort(heapSort, 10); return 1; } ``` 需要注意的是: 1. 在快速排序的 onePartition 函数中,i 和 j 的初始值应该分别为 left 和 right,而不是 left + 1 和 right - 1。这是因为在 while 循环中,i 和 j 分别向中间移动,不会越界。 2. 在堆排序的 sift 函数中,比较的应该是 tmp 和 a[son],而不是 a[parent] 和 a[son]。 3. 在堆排序的循环中,交换 a[0] 和 a[i] 后,应该对 a[0] 进行 sift 调整,而不是对 a[i] 进行 sift 调整。因为 a[i] 已经排好序了,不需要再调整。

相关推荐

下面java代码转化为c import java.util.*; public class Main{ public static void main(String args[]) { Scanner scan = new Scanner(System.in); String line; while (scan.hasNextLine()) { line = scan.nextLine().trim(); // please write your code here String[] strs=line.split("\\s+"); int[]ints=new int[strs.length]; for(int i=0;i<strs.length;i++) { ints[i]=Integer.valueOf(strs[i]); } try { int[]ints1=sort(ints); for(int i=0;i<ints1.length;i++) { System.out.print(ints1[i]+" "); } } catch (Exception e) { e.printStackTrace(); } System.out.println(); } } static int[] sort(int[] sourceArray) throws Exception { int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int maxDigit = getMaxDigit(arr); return radixSort(arr, maxDigit); } static int getMaxDigit(int[] arr) { int maxValue = getMaxValue(arr); return getNumLenght(maxValue); } static int getNumLenght(long num) { if (num == 0) { return 1; } int lenght = 0; for (long temp = num; temp != 0; temp /= 10) { lenght++; } return lenght; } static int getMaxValue(int[] arr) { int maxValue = arr[0]; for (int value : arr) { if (maxValue < value) { maxValue = value; } } return maxValue; } static int[] radixSort(int[] arr, int maxDigit) { int mod = 10; int dev = 1; for (int i = 0; i < maxDigit; i++, dev *= 10,mod *= 10) { int[][] counter = new int[20][0]; for (int j = 0; j < arr.length; j++) { int bucket = ((arr[j] % mod) / dev)+10; counter[bucket] = arrayAppend(counter[bucket], arr[j]); } int pos = 0; for (int[] bucket : counter) { for (int value : bucket) { arr[pos++] = value; } } } return arr; } static int[] arrayAppend(int[] arr, int value) { arr = Arrays.copyOf(arr, arr.length + 1); arr[arr.length - 1] = value; return arr; } }

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_SIZE 100 typedef struct { int book_id; char book_name[50]; float price; } Book; typedef struct { Book books[MAX_SIZE]; int length; } BookList; void input_books(BookList* list, int n) { for (int i = 0; i < n; i++) { printf("请输入第%d本书的信息:\n", i + 1); printf("图书编号:"); scanf("%d", &list->books[i].book_id); printf("书名:"); scanf("%s", list->books[i].book_name); printf("价格:"); scanf("%f", &list->books[i].price); } list->length = n; } void display_books(BookList* list) { printf("图书表中所有图书的相关信息:\n"); for (int i = 0; i < list->length; i++) { printf("图书编号:%d\n", list->books[i].book_id); printf("书名:%s\n", list->books[i].book_name); printf("价格:%f\n", list->books[i].price); } } void insert_book(BookList* list, int pos, Book book) { if (pos < 1 || pos > list->length + 1) { printf("插入位置不合法!\n"); return; } for (int i = list->length - 1; i >= pos - 1; i--) { list->books[i + 1] = list->books[i]; } list->books[pos - 1] = book; list->length++; } void delete_book(BookList* list, int pos) { if (pos < 1 || pos > list->length) { printf("删除位置不合法!\n"); return; } for (int i = pos - 1; i < list->length - 1; i++) { list->books[i] = list->books[i + 1]; } list->length--; } int count_books(BookList* list) { return list->length; } int partition(BookList* list, int low, int high) { Book pivot = list->books[low]; while (low < high) { while (low < high && list->books[high].book_id >= pivot.book_id) high--; list->books[low] = list->books[high]; while (low < high && list->books[low].book_id <= pivot.book_id) low++; list->books[high] = list->books[low]; } list->books[low] = pivot; return low; } void quick_sort(BookList* list, int

int i; typedef struct student { int num; char name[20]; int score[3]; float avg; }student; void Inputdata(student* stu) { printf("请输入新学生的信息:\n"); printf("num name s1 s2 s3\n"); scanf("%d %s %d %d %d", &(stu->num), stu->name, &(stu->score[0]), &(stu->score[1]), &(stu->score[2])); stu->avg = (stu->score[0] + stu->score[1] + stu->score[2]) / 3.0; } void readdate(student stu[]) { FILE* fp = fopen("stu_ sort.txt", "r"); if (fp == NULL) { printf("read stu_ sort file error!"); return -1; } for (i = 0; i < 5; i++)//从文件中读入数据 { fscanf(fp, "%d %s %d %d %d %f", &stu[i].num, stu[i].name, &stu[i].score[0], &stu[i].score[1], &stu[i].score[2], &stu[i].avg); } fclose(fp); } void Insertdata(student* oldstu, student* newstu,int n) { int pos = 0; while (pos < n) { if ((newstu->avg) < (oldstu[pos].avg)) break; pos++; } for (i = n; i > pos; i--) { memcpy(&oldstu[i],&oldstu[i-1], sizeof(student)); } memcpy(&oldstu[pos], newstu, sizeof(student)); } void writedate(student* stu) { FILE* fp = fopen("stu_new_sort.txt", "w"); if (fp == NULL) { printf("write file error!"); return -1; } for (i = 0; i < 6; i++)//使用fprint函数将结构体数组stu中的数据写入fp { fprintf(fp, "%d %s %d %d %d %f\n", stu[i].num, stu[i].name, stu[i].score[0], stu[i].score[1], stu[i].score[2], stu[i].avg); } fclose(fp); } int main() { student newstu;//首先定义一个新学生信息 Inputdata(&newstu);//输入这个新学生的信息 student oldstu[6]; readdate(oldstu);//调用函数从上一题排好序的文件中读入5个学生数据 Insertdata(oldstu, &newstu,5);//把新数据有序地插入到老数组中 writedate(oldstu);//把含有新数据的数组写入到新文件 return 0; }改写成正确的

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩