function [f, ch1_power, ch1_ch2power, ch2_power] = coh_fn(ch1, ch2, targetFreq, fs) % FFT fftlength = length(ch1); ch1_fft = fft(ch1) / fftlength * 2; ch1_fft = ch1_fft(1:fftlength/2); ch2_fft = fft(ch2) / fftlength * 2; ch2_fft = ch2_fft(1:fftlength/2); % 互功率谱叠加 ch1_ch1 = ch1_fft .* conj(ch1_fft); im_ch1_ch2 = imag(ch1_fft .* conj(ch2_fft)); re_ch2_ch1 = real(ch2_fft .* conj(ch1_fft)); ch2_ch2 = ch2_fft .* conj(ch2_fft); % 滑动平均 freq_step = fs / fftlength; fy = 0 : (fftlength/2 - 1); fy = fy .* freq_step; targetFreqIndex = find(fy == targetFreq); window_size = round(targetFreq / freq_step); % 窗口大小为目标频率对应的样本数的一半 DQA_Power = zeros(5, fftlength/2); for i = 1:(fftlength/2) start_index = max(1, i - window_size); end_index = min(fftlength/2, i + window_size); freq = fy(i); power_buf = ch1_ch1(start_index:end_index); DQA_Power(2, i) = mean(power_buf) / (fs/fftlength); power_buf = im_ch1_ch2(start_index:end_index); DQA_Power(3, i) = mean(power_buf) / (fs/fftlength); power_buf = re_ch2_ch1(start_index:end_index); DQA_Power(4, i) = mean(power_buf) / (fs/fftlength); power_buf = ch2_ch2(start_index:end_index); DQA_Power(5, i) = mean(power_buf) / (fs/fftlength); end f = fy; ch1_ch2power = sqrt(DQA_Power(4,:).^2 + DQA_Power(3,:).^2); ch1_power = sqrt(DQA_Power(2,:)); ch2_power = sqrt(DQA_Power(5,:)); end
时间: 2024-04-09 22:29:25 浏览: 234
这是一个名为 `coh_fn` 的函数,它计算两个信号之间的频谱相关性。函数的输入参数包括两个信号 `ch1` 和 `ch2`,目标频率 `targetFreq`,以及采样频率 `fs`。函数的输出包括频率向量 `f`,信号1的功率谱密度 `ch1_power`,信号1和信号2的交叉功率谱密度 `ch1_ch2power`,以及信号2的功率谱密度 `ch2_power`。
函数的实现过程如下:
1. 首先,对信号 `ch1` 和 `ch2` 进行FFT变换,并进行归一化处理。
2. 计算互功率谱叠加,包括信号1的功率谱密度 `ch1_ch1`,信号1和信号2的交叉功率谱密度的虚部 `im_ch1_ch2`,信号2和信号1的交叉功率谱密度的实部 `re_ch2_ch1`,以及信号2的功率谱密度 `ch2_ch2`。
3. 进行滑动平均计算,通过设置窗口大小来对目标频率附近的功率谱密度进行平均计算。具体步骤包括确定窗口大小、遍历每个频率点、计算对应窗口内的功率谱密度均值,并存储到 `DQA_Power` 中。
4. 输出结果,包括频率向量 `f`,信号1和信号2的交叉功率谱密度 `ch1_ch2power`,信号1的功率谱密度 `ch1_power`,以及信号2的功率谱密度 `ch2_power`。
请注意,函数中使用的变量和计算过程是根据您提供的代码片段推测的,如果有任何错误或遗漏,请及时纠正。
相关问题
% 设置特定频率和采样频率 targetFreq = 32; % 指定的目标频率 fs = 24000; % 采样频率 % 初始化存储结果的数据结构 numDataPoints = 2; % 数据点的数量 HXHX = zeros(numDataPoints, 1); % HXHX功率谱密度结果 HYHY = zeros(numDataPoints, 1); % HYHY功率谱密度结果 HXHY = zeros(numDataPoints, 1); % HXHY功率谱密度结果 % 遍历每一组数据,计算功率谱密度 for i = 1:numDataPoints % 构建当前组数据的文件名 fileName = sprintf('ch4_%d.csv', i); % 构建当前组数据的文件名 fileName1 = sprintf('ch6_%d.csv', i); % 从CSV文件中读取当前组数据 data = csvread(fileName); data1 = csvread(fileName1); % 假设数据在CSV文件的第一列 dataPoint = data(:, 1); dataPoint1 = data1(:, 1); % 计算当前组数据在特定频率上的功率谱密度 [f, ch1_power, ch1_ch2power, ch2_power] = coh_fn(dataPoint, dataPoint1, targetFreq, fs); % 将功率谱密度存储到结果数据结构中 HXHX(i) = ch1_power; HYHY(i) = ch2_power; HXHY(i) = ch1_ch2power; end % 现在,HXHX、HYHY和HXHY中存储了每一组数据在特定频率上的功率谱密度值
根据您提供的代码,您正在计算一组数据在特定频率上的功率谱密度。代码中的循环用于处理多个数据组。以下是对您代码的解释:
1. 首先,您设置了目标频率 `targetFreq` 和采样频率 `fs`。
2. 然后,您初始化了存储结果的数据结构。`numDataPoints` 表示数据点的数量,`HXHX`、`HYHY` 和 `HXHY` 分别用于存储功率谱密度的结果。
3. 接下来,使用循环遍历每一组数据。在循环中,您构建了当前组数据的文件名,并从CSV文件中读取数据。
4. 您假设数据在CSV文件的第一列,因此将数据提取到 `dataPoint` 和 `dataPoint1` 中。
5. 然后,您调用了一个名为 `coh_fn` 的函数来计算当前组数据在特定频率上的功率谱密度。函数返回了频率 `f`,通道1的功率谱密度 `ch1_power`,通道2的功率谱密度 `ch2_power`,以及通道1和通道2之间的交叉功率谱密度 `ch1_ch2power`。
6. 最后,您将计算得到的功率谱密度值存储到结果数据结构中。
通过这个循环,您可以获得每一组数据在特定频率上的功率谱密度值,并存储在 `HXHX`、`HYHY` 和 `HXHY` 中。请注意,您的代码中还需要定义 `coh_fn` 函数来计算功率谱密度。
double(m_coh.data.x(npixels+1:end,:)')
这段代码可能是在将 m_coh.data.x 中的第 npixels+1 行及以下的行提取出来,然后将其转置为列向量,最后将每个元素乘以2。
具体来说,m_coh.data.x 是一个矩阵,它的行数可能大于 npixels。npixels+1:end 表示从第 npixels+1 行开始一直到矩阵的最后一行,':' 表示提取该范围内所有的列。因此,m_coh.data.x(npixels+1:end,:) 就是提取出了矩阵中的一部分。对这部分数据进行转置后,得到了一个列向量。
最后,对这个列向量中的每个元素乘以2,得到了最终的结果。
阅读全文