python如何代码实现计算独立样本t检验效应指标Cohen’s d,差值的95%置信区间
时间: 2024-05-01 22:18:24 浏览: 179
对于这个问题,我的回答是:
实现独立样本t检验效应指标Cohen's d,可以使用以下代码:
```
import numpy as np
from scipy.stats import t
def cohens_d(x1, x2):
n1 = len(x1)
n2 = len(x2)
dof = n1 + n2 - 2
pool_var = (n1-1)*np.var(x1, ddof=1) + (n2-1)*np.var(x2, ddof=1) / dof
coh_d = (np.mean(x1)-np.mean(x2)) / np.sqrt(pool_var)
return coh_d
```
然后,使用``t.interval()``函数计算差值的95%置信区间,代码如下所示:
```
def confidence_interval(x1, x2, alpha):
n1 = len(x1)
n2 = len(x2)
dof = n1 + n2 - 2
x1_mean = np.mean(x1)
x2_mean = np.mean(x2)
s_p = np.sqrt(((n1-1)*np.var(x1, ddof=1) + (n2-1)*np.var(x2, ddof=1)) / dof)
se = s_p * np.sqrt(1/n1 + 1/n2)
t_crit = t.ppf(1-alpha/2, dof)
mean_diff = x1_mean - x2_mean
ci_lower = mean_diff - t_crit * se
ci_upper = mean_diff + t_crit * se
return (ci_lower, ci_upper)
```
所以,以上是回答您的问题的代码实现。
阅读全文