for test_batch_images, test_batch_labels in test_ds: test_batch_labels = test_batch_labels.numpy() test_batch_pres = model.predict(test_batch_images) test_batch_labels_max = np.argmax(test_batch_labels, axis=1) test_batch_pres_max = np.argmax(test_batch_pres, axis=1)
时间: 2023-09-11 19:10:23 浏览: 142
data_batch_5_data_batch5_cifar10_data_batch_0_batch_
这段代码看起来是用于对测试数据集进行预测和评估的部分。首先,它使用一个循环来迭代测试数据集(test_ds)中的批量图像和标签。然后,使用model.predict()方法对测试批量图像进行预测。接下来,使用np.argmax()函数找到每个批量标签和预测结果中的最大值索引,以便进行后续的评估和比较。
阅读全文