import numpy as np import matplotlib.pyplot as plt def f(t): return np.exp(-t)*np.cos(2*np.pi*t) t1=np.arange(0.0,5.0,0.1) t2=np.arange(0.0,5.0,0.02) plt.figure(1) plt.subplot(211) plt.plot(t1,f(t1),'bo',t2,f(t2),'k') plt.subplot(212) plt.plot(t2,np.cos(2*np.pi*t2),'r--') plt.show()

时间: 2023-12-02 21:02:37 浏览: 14
PDF

配置Python+numpy+scipy+matplotlib环境.pdf

这段代码是用 Python 中的 numpy 和 matplotlib 库画出一个函数图像。函数 f(t) 是一个以指数函数和余弦函数组成的函数,t1 和 t2 是函数的横坐标范围,plt.plot() 函数用于画出函数的图像。plt.subplot() 函数用于将整个图像分割成两个子图,并在不同的子图中画出不同的函数。最后,plt.show() 函数用于显示出画好的图像。
阅读全文

相关推荐

将这个代码修改为自适应序列采样的插值方法:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if __name__ == '__main__': snum = 12 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -4 xe = 4 x1 = np.linspace(xs, xe, snum) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

显示代码中y_rec的函数表达式:import numpy as np import matplotlib.pyplot as plt def gen_data(x1, x2): y_sample = np.sin(np.pi * x1 / 2) + np.cos(np.pi * x1 / 3) y_all = np.sin(np.pi * x2 / 2) + np.cos(np.pi * x2 / 3) return y_sample, y_all def kernel_interpolation(y_sample, x1, sig): gaussian_kernel = lambda x, c, h: np.exp(-(x - x[c]) ** 2 / (2 * (h ** 2))) num = len(y_sample) w = np.zeros(num) int_matrix = np.asmatrix(np.zeros((num, num))) for i in range(num): int_matrix[i, :] = gaussian_kernel(x1, i, sig) w = int_matrix.I * np.asmatrix(y_sample).T return w def kernel_interpolation_rec(w, x1, x2, sig): gkernel = lambda x, xc, h: np.exp(-(x - xc) ** 2 / (2 * (h ** 2))) num = len(x2) y_rec = np.zeros(num) for i in range(num): for k in range(len(w)): y_rec[i] = y_rec[i] + w[k] * gkernel(x2[i], x1[k], sig) return y_rec if name == 'main': snum =4 # control point数量 ratio =50 # 总数据点数量:snum*ratio sig = 2 # 核函数宽度 xs = -14 xe = 14 #x1 = np.linspace(xs, xe,snum) x1 = np.array([9, 9.1, 13 ]) x2 = np.linspace(xs, xe, (snum - 1) * ratio + 1) y_sample, y_all = gen_data(x1, x2) plt.figure(1) w = kernel_interpolation(y_sample, x1, sig) y_rec = kernel_interpolation_rec(w, x1, x2, sig) plt.plot(x2, y_rec, 'k') plt.plot(x2, y_all, 'r:') plt.ylabel('y') plt.xlabel('x') for i in range(len(x1)): plt.plot(x1[i], y_sample[i], 'go', markerfacecolor='none') # 计算均方根误差 rmse = np.sqrt(np.mean((y_rec - y_all) ** 2)) # 输出均方根误差值 print("均方根误差为:", rmse) plt.legend(labels=['reconstruction', 'original', 'control point'], loc='lower left') plt.title('kernel interpolation:$y=sin(\pi x/2)+cos(\pi x/3)$') plt.show()

最新推荐

recommend-type

1基于STM32的智能气象站项目.docx

1基于STM32的智能气象站项目
recommend-type

技术资料分享SH-HC-05蓝牙模块技术手册很好的技术资料.zip

技术资料分享SH-HC-05蓝牙模块技术手册很好的技术资料.zip
recommend-type

【路径规划】改进的人工势场算法机器人避障路径规划【含Matlab源码 1151期】.zip

【路径规划】改进的人工势场算法机器人避障路径规划【含Matlab源码 1151期】.zip
recommend-type

新代数控API接口实现CNC数据采集技术解析

资源摘要信息:"台湾新代数控API接口是专门用于新代数控CNC机床的数据采集技术。它提供了一系列应用程序接口(API),使开发者能够创建软件应用来收集和处理CNC机床的操作数据。这个接口是台湾新代数控公司开发的,以支持更高效的数据通信和机床监控。API允许用户通过编程方式访问CNC机床的实时数据,如加工参数、状态信息、故障诊断和生产统计等,从而实现对生产过程的深入了解和控制。 CNC(计算机数控)是制造业中使用的一种自动化控制技术,它通过计算机控制机床的运动和操作,以达到高精度和高效生产的目的。DNC(直接数控)是一种通过网络将计算机直接与数控机床连接的技术,以实现文件传输和远程监控。MDC(制造数据采集)是指从生产现场采集数据的过程,这些数据通常包括产量、效率、质量等方面的信息。 新代数控API接口的功能与应用广泛,它能够帮助工厂实现以下几个方面的优化: 1. 远程监控:通过API接口,可以实时监控机床的状态,及时了解生产进度,远程诊断机床问题。 2. 效率提升:收集的数据可以用于分析生产过程中的瓶颈,优化作业流程,减少停机时间。 3. 数据分析:通过采集加工过程中的各种参数,可以进行大数据分析,用于预测维护和质量控制。 4. 整合与自动化:新代数控API可以与ERP(企业资源计划)、MES(制造执行系统)等企业系统整合,实现生产自动化和信息化。 5. 自定义报告:利用API接口可以自定义所需的数据报告格式,方便管理层作出决策。 文件名称列表中的“SyntecRemoteAP”可能指向一个具体的软件库或文件,这是实现API接口功能的程序组件,是与数控机床进行通信的软件端点,能够实现远程数据采集和远程控制的功能。 在使用新代数控API接口时,用户通常需要具备一定的编程知识,能够根据接口规范编写相应的应用程序。同时,考虑到数控机床的型号和版本可能各不相同,API接口可能需要相应的适配工作,以确保能够与特定的机床模型兼容。 总结来说,台湾新代数控API接口为数控CNC机床的数据采集提供了强大的技术支撑,有助于企业实施智能化制造和数字化转型。通过这种接口,制造业者可以更有效地利用机床数据,提高生产效率和产品质量,同时减少人力成本和避免生产中断,最终达到提升竞争力的目的。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MapReduce数据读取艺术:输入对象的高效使用秘籍

![MapReduce数据读取艺术:输入对象的高效使用秘籍](https://www.alachisoft.com/resources/docs/ncache-5-0/prog-guide/media/mapreduce-2.png) # 1. MapReduce基础与数据读取机制 MapReduce是一种编程模型,用于处理和生成大数据集。其核心思想在于将复杂的数据处理过程分解为两个阶段:Map(映射)和Reduce(归约)。在Map阶段,系统会对输入数据进行分割处理;在Reduce阶段,系统会将中间输出结果进行汇总。这种分而治之的方法,使程序能有效地并行处理大量数据。 在数据读取机制方面
recommend-type

如何在Win10系统中通过网线使用命令行工具配置树莓派的网络并测试连接?请提供详细步骤。

通过网线直接连接树莓派与Windows 10电脑是一种有效的网络配置方法,尤其适用于不方便使用无线连接的场景。以下是详细步骤和方法,帮助你完成树莓派与Win10的网络配置和连接测试。 参考资源链接:[Windows 10 通过网线连接树莓派的步骤指南](https://wenku.csdn.net/doc/64532696ea0840391e777091) 首先,确保你有以下条件满足:带有Raspbian系统的树莓派、一条网线以及一台安装了Windows 10的笔记本电脑。接下来,将网线一端插入树莓派的网口,另一端插入电脑的网口。
recommend-type

Java版Window任务管理器的设计与实现

资源摘要信息:"Java编程语言实现的Windows任务管理器" 在这部分中,我们首先将探讨Java编程语言的基本概念,然后分析Windows任务管理器的功能以及如何使用Java来实现一个类似的工具。 Java是一种广泛使用的面向对象的编程语言,它具有跨平台、对象导向、简单、稳定和安全的特点。Java的跨平台特性意味着,用Java编写的程序可以在安装了Java运行环境的任何计算机上运行,而无需重新编译。这使得Java成为了开发各种应用程序,包括桌面应用程序、服务器端应用程序、移动应用以及各种网络服务的理想选择。 接下来,我们讨论Windows任务管理器。Windows任务管理器是微软Windows操作系统中一个系统监控工具,它提供了一个可视化的界面,允许用户查看当前正在运行的进程和应用程序,并进行任务管理,包括结束进程、查看应用程序和进程的详细信息、管理启动程序、监控系统资源使用情况等。这对于诊断系统问题、优化系统性能以及管理正在运行的应用程序非常有用。 使用Java实现一个类似Windows任务管理器的程序将涉及到以下几个核心知识点: 1. Java Swing库:Java Swing是Java的一个用于构建GUI(图形用户界面)的工具包。它提供了一系列的组件,如按钮、文本框、标签和窗口等,可用于创建窗口化的桌面应用程序。Swing基于AWT(Abstract Window Toolkit),但比AWT更加强大和灵活。在开发类似Windows任务管理器的应用程序时,Swing的JFrame、JPanel、JTable等组件将非常有用。 2. Java AWT库:AWT(Abstract Window Toolkit)是Java编程语言的一个用户界面工具包。AWT提供了一系列与平台无关的GUI组件,使得开发者能够创建与本地操作系统类似的用户界面元素。在任务管理器中,可能会用到AWT的事件监听器、窗口管理器等。 3. 多线程处理:任务管理器需要能够实时显示系统资源的使用情况,这就要求程序能够异步处理多个任务。在Java中,可以通过实现Runnable接口或继承Thread类来创建新的线程,并在多线程环境中安全地管理和更新界面元素。 4. 系统资源监控:任务管理器需要能够访问和展示CPU、内存、磁盘和网络的使用情况。在Java中,可以使用各种API和类库来获取这些资源的使用情况,例如,Runtime类可以用来获取内存使用情况和进程信息,而OperatingSystemMXBean类可以用来访问操作系统级别的信息。 5. Java NIO(New Input/Output):Java NIO提供了对于网络和文件系统的非阻塞I/O操作的支持。在实现一个任务管理器时,可能会涉及到文件的读写操作,例如,查看和修改某些配置文件,NIO将会提供比传统I/O更高效的处理方式。 6. 进程管理:任务管理器需要能够结束和管理系统中的进程。在Java中,可以通过Runtime.exec()方法执行外部命令,或者使用Java Management Extensions(JMX)API来远程管理本地和远程的Java虚拟机进程。 综上所述,使用Java实现一个Windows任务管理器需要综合运用Java Swing库、多线程处理、系统资源监控、Java NIO和进程管理等多种技术。该程序将为用户提供一个易于使用的图形界面,通过该界面可以监控和管理Windows系统上的各种任务和进程。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MapReduce数据处理流程解析:揭开任务分切到输出的神秘面纱

![MapReduce数据处理流程解析:揭开任务分切到输出的神秘面纱](https://i-blog.csdnimg.cn/direct/910b5d6bf0854b218502489fef2e29e0.png) # 1. MapReduce数据处理基础概念 ## 1.1 分布式计算的兴起 随着大数据时代的到来,对计算能力的需求快速增长,传统的单机计算模型已经无法满足复杂的数据处理需求。分布式计算应运而生,成为处理大规模数据集的有效方式。MapReduce作为一种分布式计算框架,因其简洁的编程模型和高效的处理能力而受到广泛关注。 ## 1.2 MapReduce模型简介 MapReduce