weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip, 1+self.policy_clip)*advantage[batch]

时间: 2024-04-02 10:33:46 浏览: 16
这段代码的作用是计算经过剪裁之后的加权对数概率。其中,torch.clamp()函数用于剪裁(即限制)prob_ratio的取值范围,保证其在[1-self.policy_clip, 1+self.policy_clip]之间。这是为了避免更新过程中出现过大的变化,从而确保策略梯度算法的稳定性。然后,将剪裁后的prob_ratio乘以advantage[batch],得到加权的对数概率,该概率被用于计算策略梯度损失。具体来说,这个加权的对数概率等于剪裁后的prob_ratio和advantage[batch]的乘积,其中advantage表示当前动作的优势值,而prob_ratio表示当前动作的概率比率,两者相乘得到的值反映了当前动作的贡献程度。
相关问题

def weighted_knn(self, predictions): # perform weighted knn retrieval_one_hot = torch.zeros(self.K, self.C).to(self.device) batchSize = predictions.shape[0] correlation = torch.matmul(predictions, self.features.t()) yd, yi = correlation.topk(self.K, dim=1, largest=True, sorted=True) candidates = self.targets.view(1,-1).expand(batchSize, -1) retrieval = torch.gather(candidates, 1, yi) retrieval_one_hot.resize_(batchSize * self.K, self.C).zero_() retrieval_one_hot.scatter_(1, retrieval.view(-1, 1), 1) yd_transform = yd.clone().div_(self.temperature).exp_() probs = torch.sum(torch.mul(retrieval_one_hot.view(batchSize, -1 , self.C), yd_transform.view(batchSize, -1, 1)), 1) _, class_preds = probs.sort(1, True) class_pred = class_preds[:, 0] return class_pred

这段代码是一个weighted_knn方法。它接受一个predictions参数,表示预测结果。在方法中,首先创建了一个大小为self.K x self.C的全零张量retrieval_one_hot,用于存储K个最近邻样本的独热编码表示。然后获取predictions和self.features之间的相关性矩阵correlation,使用topk方法找到相关性最高的K个样本的索引yi和相关性值yd。接下来,创建一个大小为batchSize x self.K的张量candidates,用于存储每个样本的目标值,并使用gather方法根据yi获取对应的目标值retrieval。再然后,将retrieval_one_hot重新调整大小,并根据retrieval将对应位置设置为1。将yd除以self.temperature并进行指数化,得到yd_transform。通过torch.mul函数将retrieval_one_hot和yd_transform相乘,并按行求和得到probs。最后,使用sort方法对probs进行降序排序,并获取每个样本的最高概率对应的类别索引class_pred。最终,返回class_pred作为预测结果。

def weighted_knn(self, predictions): # perform weighted knn retrieval_one_hot = torch.zeros(self.K, self.C).to(self.device) batchSize = predictions.shape[0] correlation = torch.matmul(predictions, self.features.t()) yd, yi = correlation.topk(self.K, dim=1, largest=True, sorted=True) candidates = self.targets.view(1,-1).expand(batchSize, -1) retrieval = torch.gather(candidates, 1, yi) retrieval_one_hot.resize_(batchSize * self.K, self.C).zero_() retrieval_one_hot.scatter_(1, retrieval.view(-1, 1), 1) yd_transform = yd.clone().div_(self.temperature).exp_() probs = torch.sum(torch.mul(retrieval_one_hot.view(batchSize, -1 , self.C), yd_transform.view(batchSize, -1, 1)), 1) _, class_preds = probs.sort(1, True) class_pred = class_preds[:, 0] return class_pred,这段代码是什么意思

这段代码是 `MemoryBank` 类中的一个方法 `weighted_knn`,用于执行加权 k 近邻分类算法,并返回预测的类别标签。 该方法接受一个大小为 `(batchSize, dim)` 的张量 `predictions`,表示需要预测的一批样本的特征向量。它使用最近邻算法在内存库中查找与每个查询样本最相似的 `K` 个样本,并返回它们的类别标签的加权和作为查询样本的预测类别标签。 具体来说,该方法执行以下步骤: 1. 将内存库中的样本特征向量与查询样本的特征向量计算相似度,得到一个大小为 `(batchSize, n)` 的张量 `correlation`。 2. 对 `correlation` 进行降序排序,并返回每个查询样本的前 `K` 个最相似样本的相似度值 `yd` 和它们的下标 `yi`。 3. 将内存库中的样本类别标签按照与 `yi` 相对应的方式组成一个大小为 `(batchSize, K)` 的张量 `retrieval`,表示每个查询样本的前 `K` 个最相似样本的类别标签。 4. 将 `retrieval` 转化为大小为 `(batchSize * K, C)` 的 one-hot 张量 `retrieval_one_hot`,其中第 `i*K+j` 行表示查询样本 `i` 的第 `j` 个最相似样本的类别标签。 5. 将 `yd` 除以 `temperature`,再取指数得到一个大小为 `(batchSize, K)` 的张量 `yd_transform`,用于对每个最相似样本的类别标签进行加权。 6. 将 `retrieval_one_hot` 和 `yd_transform` 进行逐元素相乘,并对每个查询样本的前 `K` 个最相似样本的加权和进行求和,得到一个大小为 `(batchSize, C)` 的张量 `probs`,表示每个查询样本属于每个类别的概率分布。 7. 对 `probs` 按照每个查询样本的概率分布进行降序排序,并返回每个查询样本的预测类别标签 `class_pred`,它是 `probs` 的第一列。

相关推荐

class Process: def __init__(self, pid, arrival_time, burst_time): self.pid = pid self.arrival_time = arrival_time self.burst_time = burst_time self.waiting_time = 0 self.turnaround_time = 0 self.response_ratio = 0 self.start_time = 0 self.complete_time = 0 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes # 创建进程列表 processes = [ Process(1, 0, 10), Process(2, 1, 5), Process(3, 2, 8), Process(4, 3, 6), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") 解释这段代码的设计思路

最新推荐

recommend-type

node-v18.11.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。