用keras.layers.Attention 代码实列
时间: 2023-11-22 11:55:00 浏览: 79
基于Keras的attention实战
下面是一个使用 Keras 中的 `Attention` 层进行文本分类的示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
class Attention(layers.Layer):
def __init__(self, units):
super(Attention, self).__init__()
self.W1 = layers.Dense(units)
self.W2 = layers.Dense(units)
self.V = layers.Dense(1)
def call(self, features, hidden):
hidden_with_time_axis = tf.expand_dims(hidden, 1)
score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
attention_weights = tf.nn.softmax(self.V(score), axis=1)
context_vector = attention_weights * features
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class TextClassifier(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, rnn_units, output_dim):
super().__init__()
self.embedding = layers.Embedding(vocab_size, embedding_dim)
self.lstm = layers.LSTM(rnn_units, return_sequences=True, return_state=True)
self.attention = Attention(rnn_units)
self.fc = layers.Dense(output_dim, activation='softmax')
def call(self, inputs):
x = self.embedding(inputs)
output, state_h, state_c = self.lstm(x)
context_vector, attention_weights = self.attention(output, state_h)
x = self.fc(context_vector)
return x
```
以上代码定义了一个继承自 `tf.keras.Model` 的文本分类模型 `TextClassifier`,其中包含了一个 `Attention` 层。在模型的 `call` 方法中,首先对输入的文本进行嵌入层的处理,然后将嵌入向量输入到 LSTM 层中进行序列建模。在 LSTM 层的输出序列上应用 `Attention` 层,得到每个时间步的注意力权重,进而对 LSTM 层的输出进行加权求和,得到上下文向量。最后,将上下文向量输入全连接层中进行分类。
阅读全文