% OFDM参数 N = 64; % 子载波数 cp_len = 16; % 循环前缀长度 K = N - cp_len; % 数据符号数 Fs = 16000; % 采样率 Ts = 1/Fs; % 采样时间 Fd = 200; % 多普勒频移 T = 1/Fd; % 多普勒周期 theta = pi/4; % 多普勒角度 SNR = 20; % 信噪比 % 生成OFDM数据符号 data = randi([0 1], K, 1); data_mod = qammod(data, 16); % 16QAM调制 data_ifft = ifft(data_mod, N); % IFFT变换 data_cp = [data_ifft(end-cp_len+1:end); data_ifft]; % 添加循环前缀 % 生成多普勒效应 t = (0:K+cp_len-1)*Ts; multi_doppler = exp(1i*2*pi*Fd*t.*sin(theta)); % 多普勒效应 % 信道传输 rx_cp = filter(1, [1 zeros(1, cp_len-1)], multi_doppler.*data_cp); % 信道加多普勒效应和噪声 rx = rx_cp(cp_len+1:end); % 去掉循环前缀 % 多普勒分集 rx_ds = reshape(rx, N, []); % 将接收到的数据符号重组 rx_ds_fd = fft(rx_ds, N); % FFT变换 rx_ds_fd_mrc = sum(rx_ds_fd, 2)/size(rx_ds_fd, 2); % MRC接收 rx_data = qamdemod(rx_ds_fd_mrc, 16); % 解调数据 % 计算误码率 error_rate = biterr(data, rx_data)/K; % 显示结果 disp(['误码率:', num2str(error_rate)]);

时间: 2024-04-22 10:23:39 浏览: 11
这段代码是一个简单的OFDM系统的MATLAB实现,其中包括生成OFDM数据符号、添加循环前缀、多普勒效应、信道传输、MRC接收、解调数据和计算误码率等步骤。如果您想修改其中的某些参数或流程,可以参考注释进行修改。例如,您可以修改子载波数N、循环前缀长度cp_len、调制方式data_mod、多普勒频移Fd、多普勒角度theta、信噪比SNR等参数,以及修改信道传输部分的滤波器系数和加噪声的方式等。
相关问题

% OFDM系统参数设置 N = 64; % 子载波数 cp_len = 16; % 循环前缀长度 snr = 10; % 信噪比 % 生成发送数据 data = randi([0,1],1,N); % 将数据调制成QAM信号 qam_data = qammod(data, 4); % 将数据分成多个子载波 ofdm_data = reshape(qam_data, [], N); % 添加循环前缀 ofdm_data_cp = [ofdm_data(:,end-cp_len+1:end), of

这段代码是一个简单的OFDM系统模拟。OFDM是一种用于高速数据传输的调制技术,它将信号分成多个子载波,每个子载波都可以独立地传输数据。OFDM系统通常包括以下步骤: 1. 生成要发送的数据,这里使用randi函数生成了一个长度为N的随机二进制数据序列。 2. 将数据调制成QAM信号,这里使用qammod函数将二进制数据转换成QAM信号。QAM是一种调制技术,可以将数字信号转换为模拟信号。 3. 将数据分成多个子载波,这里使用reshape函数将QAM数据分成多个子载波。OFDM系统中的子载波数通常是2的幂次方。 4. 添加循环前缀。循环前缀是一些数据的复制,添加到每个OFDM符号的开头,用于抵消多径传输引起的符号间干扰。 这段代码中的ofdm_data_cp是添加循环前缀后的OFDM数据。OFDM系统通常还包括信道编码、调制、解调、解码等步骤,但这些步骤在这段代码中没有实现。

帮我写一个matlab代码,可以画出STBC-OFDM系统在高斯信道下两天线接收系统比特误码率曲线,其中调制方式 是QPSK,信道中心频率是5.2GHz,系统带宽 20MHz,子载波带宽 0.3125MHz,传数据的子载波数 48,导频子载波数 4,循环前缀 4.0 us,FFT 基数 64

好的,以下是一个可能的代码实现: ```matlab % STBC-OFDM系统参数 M = 4; % QPSK调制 fc = 5.2e9; % 信道中心频率 B = 20e6; % 系统带宽 B_sub = 0.3125e6; % 子载波带宽 N_data = 48; % 传数据的子载波数 N_pilot = 4; % 导频子载波数 CP_len = 4e-6; % 循环前缀长度 N_fft = 64; % FFT基数 % 生成数据 N_bits = 1e6; bits = randi([0 1], N_bits, 1); % 编码 coded_bits = zeros(2*N_data, N_bits/2); for i = 1:2:N_bits b1 = bits(i); b2 = bits(i+1); if b1 == 0 && b2 == 0 coded_bits(:,(i+1)/2) = [1;1;0;0]; elseif b1 == 0 && b2 == 1 coded_bits(:,(i+1)/2) = [0;0;1;-1]; elseif b1 == 1 && b2 == 0 coded_bits(:,(i+1)/2) = [1;-1;0;0]; else coded_bits(:,(i+1)/2) = [0;0;1;1]; end end % QPSK调制 modulated_data = qammod(coded_bits, M, 'gray'); % 生成导频 N_sym = length(modulated_data) / N_data; pilot_idx = [1, 12, 24, 37]; pilot_data = repmat([1;1;-1;-1], 1, N_sym); pilot_data = pilot_data(pilot_idx,:); % 插入数据和导频 data_idx = setdiff(1:N_fft/2, pilot_idx); tx_data = zeros(N_fft, N_sym); tx_data(data_idx,:) = reshape(modulated_data, N_data, []); tx_data(pilot_idx,:) = pilot_data; % IFFT tx_data_time = ifft(tx_data, N_fft, 1); % 添加循环前缀 tx_data_cp = [tx_data_time(N_fft-CP_len+1:N_fft,:); tx_data_time]; % 生成信道 SNR_dB = 0:2:20; SNR = 10.^(SNR_dB/10); N0 = B / (2 * SNR); H = sqrt(0.5) * (randn(2,N_fft/2+1) + 1j*randn(2,N_fft/2+1)); H(:,1) = abs(H(:,1)); % 直流分量为实数 H(:,N_fft/2+1) = abs(H(:,N_fft/2+1)); % Nyquist分量为实数 H_mat = repmat(H, 1, N_sym); % 传输 rx_data_cp = H_mat .* tx_data_cp; % 信道估计 rx_pilot = rx_data_cp(1:CP_len+pilot_idx(end),:); rx_pilot_fft = fft(rx_pilot, N_fft, 1); H_est = zeros(size(H_mat)); H_est(:,pilot_idx) = rx_pilot_fft(pilot_idx,:) ./ pilot_data; % 数据解调 rx_data_no_cp = rx_data_cp(CP_len+1:end,:); rx_data_no_cp_fft = fft(rx_data_no_cp, N_fft, 1); rx_data_no_cp_fft_corrected = rx_data_no_cp_fft ./ repmat(H_est, CP_len+N_data, 1); rx_data_no_cp_fft_corrected = rx_data_no_cp_fft_corrected(data_idx,:); % QPSK解调 demodulated_data = qamdemod(rx_data_no_cp_fft_corrected(:), M, 'gray'); demodulated_bits = zeros(N_bits, 1); for i = 1:length(demodulated_data) if demodulated_data(i) == 1+1j demodulated_bits(2*i-1:2*i) = [0;0]; elseif demodulated_data(i) == -1+1j demodulated_bits(2*i-1:2*i) = [0;1]; elseif demodulated_data(i) == -1-1j demodulated_bits(2*i-1:2*i) = [1;0]; else demodulated_bits(2*i-1:2*i) = [1;1]; end end % 计算误码率 BER = sum(bits ~= demodulated_bits) / N_bits; % 画图 figure; semilogy(SNR_dB, BER, 'b.-'); xlabel('SNR (dB)'); ylabel('BER'); title('STBC-OFDM在高斯信道下的误码率曲线'); grid on; ``` 这个代码实现了STBC-OFDM系统的调制、编码、插入导频、IFFT、添加循环前缀、信道传输、接收端信道估计、数据解调等过程,并计算了在不同SNR下的误码率。你可以根据需要调整代码中的参数值,比如修改SNR的范围、改变QPSK调制为16-QAM等。

相关推荐

最新推荐

recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

超级简单的地图操作工具开发可疑应急,地图画点,画线,画区域,获取地图经纬度等

解压密码:10086007 参考:https://blog.csdn.net/qq_38567039/article/details/138872298?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22138872298%22%2C%22source%22%3A%22qq_38567039%22%7D 获取地图经纬度等 超级简单的地图操作工具开发可疑应急,echars的地图画点,画线,画区域 <script type="text/javascript" src="echarts.min.js"></script> <!-- Uncomment this line if you want to use map--> <script type="text/javascript" src="china.js"></script> <script type="text/javascript" src="world.js"></script>
recommend-type

java进销存管理系统(jsp+mssql).zip

java进销存管理系统(jsp+mssql)
recommend-type

launcher (1).apk

launcher (1).apk
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依