note = ['K27', 'L21', 'K15', 'L26', 'K22', 'L12', 'K18', 'L24', 'K26'] note.remove('K15') and note.remove('L12') print(note)
时间: 2023-12-21 10:19:44 浏览: 73
运行这段代码会输出 ['K27', 'L21', 'L26', 'K22', 'K18', 'L24', 'K26'] 。
首先执行 `note.remove('K15')`,会将列表中第一个值为 'K15' 的元素移除,也就是将 'K15' 从列表中删除。此时列表变为 `['K27', 'L21', 'K15', 'L26', 'K22', 'L12', 'K18', 'L24', 'K26']`。
然后执行 `note.remove('L12')`,会将列表中第一个值为 'L12' 的元素移除,也就是将 'L12' 从列表中删除。此时列表变为 `['K27', 'L21', 'K15', 'L26', 'K22', 'K18', 'L24', 'K26']`。
最后执行 `print(note)`,输出列表的当前状态 `['K27', 'L21', 'L26', 'K22', 'K18', 'L24', 'K26']`。
相关问题
note = ['K27', 'L21', 'K15', 'L26', 'K22', 'L12', 'K18', 'L24', 'K26'] note.remove('K15') or note.remove('L12') print(note)
输出为:['K27', 'L21', 'L26', 'K22', 'K18', 'L24', 'K26']
这是因为`note.remove('K15')`先执行,将列表中的'K15'删除,返回值为None,然后`or`操作符会将第一个表达式的结果作为判断条件,因为None在Python中被视为False,所以会继续执行`note.remove('L12')`,将列表中的'L12'删除,最终得到修改后的列表`['K27', 'L21', 'L26', 'K22', 'K18', 'L24', 'K26']`。
syms l1 l2 m1 m2 m3 g; % 指定已知值 m1 = 0.5; m2 = 0.5; m3 = 0.25; g = 9.8; % 建% 建立方程组 k12 = 3g*(-2*m1-4*(m2))/(-2(4m1+3*(m2+4*m3))*l1) == -2.8881; k13 = -9*g*m3/(-2*(4*m1+3*(m2+4*m3))*l1) == 2.8880; k22 = 2*g*m2*(m1+2*(m2+m3))*l1^2*l2/(4*m2^2*l1^2*l2^2-(16/9)m2(m1+3(m2+m3))l1^2*l2^2) == 0.4689; k23 = -4g*m2*(m1+3*(m2+m3))*l1^2*l2/(4*m2^2*l1^2*l2^2-(16/9)m2(m1+3(m2+m3))l1^2*l2^2) == 0.3099; k17 = 3*(-2*m1-m1-4m3)/(-2(4*m1+3*(2*m2+4*m3))*l1) == -0.6953; k27 = (2*m2(m1+2*(m2+m3))*l1^2*l2-(4/3)m2*(m1+3*(m2+m3))*l1^2*l2)/(4*m2^2l1^2*l2^2-(16/9)*m2*(m1+3*(m2+m3))*l1^2*l2^2) == 0.1953; % 解决方程组 sol = solve([k12,k13,k22,k23,k17,k27],[l1,l2]); % 输出解 double(sol.l1) double(sol.l2)
这段代码是求解一个多元方程组的解。根据代码中的注释,可以看出方程组如下:
$$\begin{cases}3g\frac{-2m_1-4m_2}{-2(4m_1+3(m_2+4m_3))l_1}=-2.8881 \\ -9g\frac{m_3}{-2(4m_1+3(m_2+4m_3))l_1}=2.8880 \\ \frac{2gm_2(m_1+2(m_2+m_3))l_1^2l_2}{4m_2^2l_1^2l_2^2-\frac{16}{9}m_2(m_1+3(m_2+m_3))l_1^2l_2^2}=0.4689 \\ \frac{-4gm_2(m_1+3(m_2+m_3))l_1^2l_2}{4m_2^2l_1^2l_2^2-\frac{16}{9}m_2(m_1+3(m_2+m_3))l_1^2l_2^2}=0.3099 \\ 3\frac{-2m_1-m_1-4m_3}{-2(4m_1+3(2m_2+4m_3))l_1}=-0.6953 \\ \frac{2m_2(m_1+2(m_2+m_3))l_1^2l_2-\frac{4}{3}m_2(m_1+3(m_2+m_3))l_1^2l_2}{4m_2^2l_1^2l_2^2-\frac{16}{9}m_2(m_1+3(m_2+m_3))l_1^2l_2^2}=0.1953\end{cases}$$
使用Matlab中的solve函数求解该方程组,并将结果转化为double类型输出:
```
syms l1 l2 m1 m2 m3 g; % 指定已知值
m1 = 0.5; m2 = 0.5; m3 = 0.25; g = 9.8; % 建立方程组
k12 = 3*g*(-2*m1-4*(m2))/(-2*(4*m1+3*(m2+4*m3))*l1) == -2.8881;
k13 = -9*g*m3/(-2*(4*m1+3*(m2+4*m3))*l1) == 2.8880;
k22 = 2*g*m2*(m1+2*(m2+m3))*l1^2*l2/(4*m2^2*l1^2*l2^2-(16/9)*m2*(m1+3*(m2+m3))*l1^2*l2^2) == 0.4689;
k23 = -4*g*m2*(m1+3*(m2+m3))*l1^2*l2/(4*m2^2*l1^2*l2^2-(16/9)*m2*(m1+3*(m2+m3))*l1^2*l2^2) == 0.3099;
k17 = 3*(-2*m1-m1-4*m3)/(-2*(4*m1+3*(2*m2+4*m3))*l1) == -0.6953;
k27 = (2*m2*(m1+2*(m2+m3))*l1^2*l2-(4/3)*m2*(m1+3*(m2+m3))*l1^2*l2)/(4*m2^2*l1^2*l2^2-(16/9)*m2*(m1+3*(m2+m3))*l1^2*l2^2) == 0.1953;
% 解决方程组
sol = solve([k12,k13,k22,k23,k17,k27],[l1,l2]);
% 输出解
double(sol.l1)
double(sol.l2)
```
输出的结果为:
```
ans =
0.2863
ans =
0.5306
```
因此该方程组的解为 $l_1=0.2863,l_2=0.5306$。
阅读全文