Use SGD to optimize the parameters in self.model
时间: 2023-11-27 13:53:37 浏览: 81
Optimization for parameter
Sure, here is an example code snippet that uses SGD optimizer to optimize the parameters in self.model:
```
import torch.optim as optim
# Define the SGD optimizer with a learning rate of 0.01
optimizer = optim.SGD(self.model.parameters(), lr=0.01)
# Loop over your training data batches
for batch in training_data:
# Clear gradients
optimizer.zero_grad()
# Forward pass
output = self.model(batch)
# Calculate loss
loss = compute_loss(output, target)
# Backward pass
loss.backward()
# Update parameters
optimizer.step()
```
In this code, `self.model` is assumed to be a PyTorch model that has trainable parameters. We define an SGD optimizer with a learning rate of 0.01 and use it to optimize the model parameters. In each training batch, we first clear the gradients, perform a forward pass to get the model output, compute the loss, perform a backward pass to compute the gradients, and finally update the model parameters using the `optimizer.step()` call.
阅读全文