1、设计一个复数Complex 类,用友元函数重载乘法运算符(*),用成员函数重载除法运算符(/),完成两个复数对象的乘除法。 加法:(a+bi)+(c+di)=(a+c)+(b+d)i; 减法:(a+bi)-(c+di)=(a-c)+(b-d)i; 乘法:( (a+bi)∗(c+di)=(ac−bd)+(ad+bc)i; 除法:( (a+bi)/(c+di)=((a+bi)∗(c−di))/(c∗c+d∗d);要求一个完整的代码
时间: 2023-10-27 14:05:56 浏览: 67
好的,这是一个完整的代码实现,包括了复数类的定义和各种运算符的重载:
```cpp
#include <iostream>
class Complex {
public:
Complex(double r = 0, double i = 0);
Complex operator+(const Complex& b) const;
Complex operator-(const Complex& b) const;
friend Complex operator*(const Complex& a, const Complex& b);
Complex operator/(const Complex& b) const;
friend std::ostream& operator<<(std::ostream& os, const Complex& c);
private:
double real;
double imag;
};
Complex::Complex(double r, double i) : real(r), imag(i) {}
Complex Complex::operator+(const Complex& b) const {
return Complex(real + b.real, imag + b.imag);
}
Complex Complex::operator-(const Complex& b) const {
return Complex(real - b.real, imag - b.imag);
}
Complex operator*(const Complex& a, const Complex& b) {
double r = a.real * b.real - a.imag * b.imag;
double i = a.real * b.imag + a.imag * b.real;
return Complex(r, i);
}
Complex Complex::operator/(const Complex& b) const {
double denominator = b.real * b.real + b.imag * b.imag;
double r = (real * b.real + imag * b.imag) / denominator;
double i = (imag * b.real - real * b.imag) / denominator;
return Complex(r, i);
}
std::ostream& operator<<(std::ostream& os, const Complex& c) {
os << c.real << " + " << c.imag << "i";
return os;
}
int main() {
Complex a(1, 2);
Complex b(3, 4);
Complex c = a * b;
Complex d = a / b;
Complex e = a + b;
Complex f = a - b;
std::cout << "a * b = " << c << std::endl;
std::cout << "a / b = " << d << std::endl;
std::cout << "a + b = " << e << std::endl;
std::cout << "a - b = " << f << std::endl;
return 0;
}
```
在这个代码中,我们定义了一个复数类 Complex,包含实部和虚部两个成员变量,以及构造函数和重载加法运算符(+)、减法运算符(-)、乘法运算符(*)、除法运算符(/)和输出流运算符(<<)的函数。在主函数中,我们创建了两个复数对象 a 和 b,对它们进行了四种运算,并输出结果。
希望这个完整的代码能够帮到你!
阅读全文