X = data.iloc[:, :-1] y = data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
时间: 2023-12-24 17:03:05 浏览: 176
logistic_regression_data.txt-数据集
这段代码是将一个 Pandas DataFrame 数据集分割为训练集和测试集的过程。具体来说,它使用了 Pandas 的 iloc 函数来选择数据集的子集,然后使用 Scikit-learn 的 train_test_split 函数将数据分割为训练集和测试集。
- `X = data.iloc[:, :-1]`:这行代码使用 iloc 函数选择了数据集中除最后一列以外的所有列,这些列表示模型的特征变量。
- `y = data.iloc[:, -1]`:这行代码使用 iloc 函数选择了数据集中最后一列,这列表示模型的目标变量。
- `train_test_split(X, y, test_size=0.2, random_state=42)`:这行代码使用 Scikit-learn 的 train_test_split 函数将数据集分割为训练集和测试集。其中,X 和 y 分别表示特征变量和目标变量的数据集,test_size 表示测试集的大小(这里是 20%),random_state 是一个随机种子,用于控制每次分割的结果相同。
- `X_train, X_test, y_train, y_test = ...`:这行代码将 train_test_split 函数返回的四个变量分别赋值给了 X_train, X_test, y_train 和 y_test。其中,X_train 和 y_train 表示训练集的特征变量和目标变量,X_test 和 y_test 表示测试集的特征变量和目标变量。
这个过程通常是在训练机器学习模型时使用的,它可以保证我们在训练模型时不会使用测试集中的数据,从而避免过拟合。
阅读全文