df2=df2.sample(10000) AttributeError: 'ExcelFile' object has no attribute 'sample',如何进行修改?
时间: 2023-10-30 18:58:45 浏览: 76
根据你提供的引用内容,发生了两个错误。第一个错误是在执行代码`train_data = train_data.append(contents[:400])`时出现了`AttributeError: 'DataFrame' object has no attribute 'append'`的错误。而第二个错误是在执行代码`df2=df2.sample(10000)`时出现了`AttributeError: 'ExcelFile' object has no attribute 'sample'`的错误。
针对第一个错误,原因是在最新版本的pandas中,DataFrame对象不再具有`append`方法。为了解决这个问题,可以使用pandas的`concat()`方法将两个DataFrame对象连接起来。你可以使用以下代码进行修改:
```python
train_data = pd.concat([train_data, contents[:400]])
```
针对第二个错误,原因是`ExcelFile`对象没有`sample`方法。要解决这个问题,你需要先使用`ExcelFile.parse()`方法将Excel文件解析为DataFrame对象,然后再使用`sample`方法。以下是一个修改的示例:
```python
df2 = pd.read_excel(file_path) # 假设file_path是你的Excel文件路径
df2 = df2.sample(10000)
```
通过这样的修改,你应该能够解决这两个错误并成功执行你的代码。
相关问题
df2=df2.sample(10000) AttributeError: 'ExcelFile' object has no attribute 'sample'
引用中提到了一个错误:AttributeError: 'str' object has no attribute 'isoformat',这个错误通常发生在将字符串对象当作日期对象处理时。要解决这个错误,可以检查代码中是否将字符串对象正确转换为日期格式,例如使用datetime模块的相关函数进行转换。
引用中提到了另一个错误:AttributeError: 'DataFrame' object has no attribute 'concat'。这个错误通常发生在尝试使用pandas库的DataFrame对象的concat方法时。要解决这个错误,可以检查代码中是否正确地导入了pandas库,以及是否正确地调用了DataFrame对象的concat方法。
引用中提到了一段代码,其中使用了DataFrame对象的concat方法进行列合并。这段代码的目的是将df2的"prices"列与df1进行合并,并将结果保存在df3中。然后通过print函数打印df3的内容。这段代码的错误在于使用了错误的语法,应该是使用等号进行赋值操作,而不是使用concat方法进行合并。正确的写法应该是df3 = df1['prices'].concat(df2, axis=1)。
回答你的问题,df2=df2.sample(10000)的错误是AttributeError: 'ExcelFile' object has no attribute 'sample'。这个错误发生在尝试对ExcelFile对象调用sample方法时。要解决这个错误,可以检查代码中是否正确地导入了pandas库,并且是否正确地将Excel文件加载为DataFrame对象。另外,确保DataFrame对象的名称正确并且已经成功加载了Excel文件。
if df2['RECIPE'].str[:5] == select_chars.any(): AttributeError: 'str' object has no attribute 'any'
根据你提供的引用内容,你遇到了一个AttributeError错误,错误信息是"'str' object has no attribute 'any'"。这个错误是因为你在字符串对象上调用了any()方法,而字符串对象没有any()方法。any()方法是用于判断可迭代对象中是否存在至少一个为True的元素。所以,你需要将df2['RECIPE'].str[:5] == select_chars.any()这行代码进行修改。
你可以使用isin()方法来解决这个问题。isin()方法用于判断Series或DataFrame中的元素是否在给定的列表或数组中。下面是修改后的代码示例:
```python
df2[df2['RECIPE'].str[:5].isin(select_chars)]
```
这样,你就可以判断df2['RECIPE']列中的元素的前5个字符是否在select_chars列表中,并返回符合条件的行。
阅读全文