给定一个数据集 请用python写一个mRMR特征选择的程序
时间: 2023-11-12 20:04:27 浏览: 153
好的!下面是一个使用Python实现mRMR特征选择的程序:
```python
import pandas as pd
import numpy as np
from sklearn.feature_selection import mutual_info_classif
def mrmr_feature_selection(X, y, n_features):
num_features = X.shape[1]
selected_features = [] # 存储被选择的特征索引
# 计算每个特征与目标变量的互信息
mi_scores = mutual_info_classif(X, y)
for _ in range(n_features):
max_mrmr = -np.inf
best_feature = None
for feature in range(num_features):
if feature not in selected_features:
mrmr = mi_scores[feature] - average_conditional_mutual_information(X, selected_features, feature, y)
if mrmr > max_mrmr:
max_mrmr = mrmr
best_feature = feature
selected_features.append(best_feature)
return selected_features
def average_conditional_mutual_information(X, selected_features, x_i, y):
acmi = 0
for feature in selected_features:
acmi += conditional_mutual_information(X[:, x_i], X[:, feature], y)
return acmi / len(selected_features)
def conditional_mutual_information(x, z, y):
pxyz = pd.crosstab(index=x, columns=[z,y], rownames=['x'], colnames=['z','y'], normalize='index').values
cmi = 0
for i in range(pxyz.shape[0]):
for j in range(pxyz.shape[1]):
for k in range(pxyz.shape[2]):
if pxyz[i][j][k] > 0:
cmi += pxyz[i][j][k] * np.log2(pxyz[i][j][k] / (pxyz[i].sum() * pxyz[:,j,k].sum()))
return cmi
# 使用示例
data = pd.read_csv('your_data.csv') # 读取数据集,假设数据集保存在名为your_data.csv的文件中
X = data.iloc[:, :-1].values # 样本特征矩阵
y = data.iloc[:, -1].values # 目标变量
n_features = 5 # 需要选择的特征数量
selected_features = mrmr_feature_selection(X, y, n_features)
print("Selected features:", selected_features)
```
在这个示例中,我们首先使用`pandas`库读取数据集,假设数据集保存在名为`your_data.csv`的文件中。然后,我们提取样本特征矩阵`X`和目标变量`y`。接下来,我们通过调用`mrmr_feature_selection`函数来选择指定数量的特征。最后,我们打印出被选择的特征索引。
请确保将代码中的`your_data.csv`替换为你实际的数据集文件名,并根据数据集的特征和目标变量的列索引进行适当调整。此外,你也可以根据需要进行其他调整和扩展。
阅读全文