mrmr特征选择 python代码
时间: 2023-07-22 20:10:14 浏览: 314
以下是使用Python进行mRMR特征选择的示例代码:
```python
import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest, mutual_info_classif
def mrmr_feature_selection(X, y, k):
# 计算互信息
mi = mutual_info_classif(X, y)
# 初始化特征索引列表和已选择特征集合
feature_indices = list(range(X.shape[1]))
selected_features = []
# 选择第一个特征(最大互信息)
max_mi_index = np.argmax(mi)
selected_features.append(feature_indices[max_mi_index])
feature_indices.pop(max_mi_index)
# 依次选择剩余的特征
for _ in range(1, k):
max_mrmr = float('-inf')
selected_feature = None
# 计算每个特征的mRMR值
for feature in feature_indices:
mRMR = mi[feature] - np.mean([mi[feature] for feature in selected_features])
if mRMR > max_mrmr:
max_mrmr = mRMR
selected_feature = feature
# 将mRMR值最大的特征添加到已选择特征集合中
selected_features.append(selected_feature)
feature_indices.remove(selected_feature)
# 返回选择的特征
return X[:, selected_features]
# 示例用法
# 加载数据集
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1).values
y = data['target'].values
# 进行mRMR特征选择,选择4个特征
selected_X = mrmr_feature_selection(X, y, k=4)
# 打印选择的特征
print(selected_X)
```
请确保安装所需的依赖库(如pandas和scikit-learn)并将数据集替换为您自己的数据。此代码将根据互信息计算mRMR值,并选择具有最高mRMR值的k个特征。
阅读全文