全连接网络模型每次迁移都使用sffst特征选择,sffs使用互信息作为评价指标mrmr作为准则函数。python pytorch代码每行详细解释
时间: 2024-03-23 21:36:42 浏览: 122
首先,全连接网络模型是一种深度学习模型,其输入层、隐藏层和输出层之间的神经元均为全连接关系。而特征选择是指从原始数据中选择最具代表性的特征子集,以提高模型性能和减少计算复杂度。
sffs(Sequential Forward Floating Selection)是一种特征选择算法,其基本思路是通过不断向当前特征子集中添加新的特征并评估模型性能来选择最佳特征子集。而sffs中使用互信息作为评价指标,其计算方式为:
```python
def mutual_info(X, y):
"""
Calculate mutual information between each feature and the target variable y.
X: feature matrix
y: target variable
return: mutual information scores for each feature
"""
mi = []
for i in range(X.shape[1]):
mi.append(mutual_info_score(X[:, i], y))
return mi
```
其中,X为特征矩阵,y为目标变量,mutual_info_score是sklearn库中计算互信息的函数。
mrmr(Minimum Redundancy Maximum Relevance)是一种准则函数,用于衡量特征之间的相关性和特征与目标变量之间的相关性,其基本思路是选择最具代表性的特征子集,使得该子集中的特征之间的相关性最小、特征与目标变量之间的相关性最大。其计算方式为:
```python
def mrmr(X, y, n_features):
"""
Select the top n_features features based on mRMR criteria.
X: feature matrix
y: target variable
n_features: number of selected features
return: index of selected features
"""
mi = mutual_info(X, y)
mrmr = []
mrmr.append(np.argmax(mi))
for i in range(1, n_features):
mr = []
for j in range(X.shape[1]):
if j not in mrmr:
mr.append(mi[j] - np.mean([mutual_info(X[:, j], X[:, k]) for k in mrmr]))
mrmr.append(np.argmax(mr))
return mrmr
```
其中,mi为特征与目标变量之间的互信息,mr为特征子集中特征之间的相关性,mrmr为最终的特征子集。在mrmr函数中,首先选择互信息最大的特征作为初始特征子集,然后通过计算剩余特征与该子集中特征的相关性,选择与该子集相关性最小的特征加入到子集中,以此类推,直到选择n_features个特征。
最后,使用sffs和mrmr进行特征选择的代码如下所示:
```python
import numpy as np
from sklearn.feature_selection import mutual_info_score
def mutual_info(X, y):
"""
Calculate mutual information between each feature and the target variable y.
X: feature matrix
y: target variable
return: mutual information scores for each feature
"""
mi = []
for i in range(X.shape[1]):
mi.append(mutual_info_score(X[:, i], y))
return mi
def mrmr(X, y, n_features):
"""
Select the top n_features features based on mRMR criteria.
X: feature matrix
y: target variable
n_features: number of selected features
return: index of selected features
"""
mi = mutual_info(X, y)
mrmr = []
mrmr.append(np.argmax(mi))
for i in range(1, n_features):
mr = []
for j in range(X.shape[1]):
if j not in mrmr:
mr.append(mi[j] - np.mean([mutual_info(X[:, j], X[:, k]) for k in mrmr]))
mrmr.append(np.argmax(mr))
return mrmr
class FCNet(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims):
super(FCNet, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dims = hidden_dims
# Feature selection using sffs and mrmr
features = mrmr(X, y, input_dim)
self.features = nn.Sequential(*[nn.Linear(1, 1) for i in range(input_dim) if i in features])
self.output_layer = nn.Linear(len(features), output_dim)
# Define hidden layers
self.hidden_layers = nn.ModuleList()
for i in range(len(hidden_dims)):
if i == 0:
self.hidden_layers.append(nn.Linear(len(features), hidden_dims[i]))
else:
self.hidden_layers.append(nn.Linear(hidden_dims[i-1], hidden_dims[i]))
def forward(self, x):
# Feature selection
x = torch.cat([self.features[i](x[:, i:i+1]) for i in range(self.input_dim) if i in self.features], dim=1)
# Pass through hidden layers
for hidden_layer in self.hidden_layers:
x = F.relu(hidden_layer(x))
# Pass through output layer
x = self.output_layer(x)
return x
```
在FCNet模型中,首先使用mrmr进行特征选择,得到最终的特征子集,然后使用sffs进行特征选择,得到每一层中需要使用的特征子集。具体来说,FCNet模型中的features部分是通过mrmr选择的特征子集,通过nn.Sequential将选择的特征子集转化为nn.Linear层。在forward函数中,首先通过features部分对输入数据进行特征选择,然后将选择的特征子集输入到隐藏层和输出层中,以进行模型训练。
阅读全文