帮我写一个paillier同态加密的python代码
时间: 2024-01-11 12:03:43 浏览: 93
好的,以下是一个简单的Paillier同态加密的Python代码:
```python
import random
import math
class Paillier:
def __init__(self, key_size):
self.key_size = key_size
self.public_key, self.private_key = self.generate_key_pair()
def generate_key_pair(self):
p, q = self.generate_primes()
n = p * q
phi_n = (p - 1) * (q - 1)
g = n + 1
l = self.l_function(g, n)
mu = self.mod_inverse(l, n)
public_key = (n, g)
private_key = (p, q, mu)
return public_key, private_key
def generate_primes(self):
p = random.randint(2**(self.key_size-1), 2**self.key_size-1)
q = random.randint(2**(self.key_size-1), 2**self.key_size-1)
while not self.is_prime(p) or not self.is_prime(q):
p = random.randint(2**(self.key_size-1), 2**self.key_size-1)
q = random.randint(2**(self.key_size-1), 2**self.key_size-1)
return p, q
def is_prime(self, n):
if n <= 1:
return False
elif n <= 3:
return True
elif n % 2 == 0 or n % 3 == 0:
return False
i = 5
while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
def l_function(self, x, n):
return (x - 1) // n
def mod_inverse(self, a, m):
gcd, x, y = self.extended_gcd(a, m)
if gcd != 1:
return None
else:
return x % m
def extended_gcd(self, a, b):
if a == 0:
return (b, 0, 1)
else:
gcd, x, y = self.extended_gcd(b % a, a)
return (gcd, y - (b // a) * x, x)
def encrypt(self, m):
n, g = self.public_key
r = random.randint(1, n)
c = (pow(g, m, n**2) * pow(r, n, n**2)) % (n**2)
return c
def decrypt(self, c):
p, q, mu = self.private_key
n = p * q
l = self.l_function(pow(c, p-1, p**2), p) * mu % p
m = (pow(c, n, n**2) - 1) // n * l % n
return m
```
示例代码中包含了Paillier加密方案的加密、解密、密钥生成等操作,你可以根据自己的需要进行调整和使用。
阅读全文