已知下列字符A、B、C、D、E、F、G的权值分别为3、12、7、4、2、8,11,试填写出其对应哈夫曼树HT的存储结构的终态,并画出该哈夫曼树。
时间: 2023-11-29 17:46:22 浏览: 848
以下是对应哈夫曼树HT的存储结构的终态:
```
HT = [
[23, -1, -1],
[11, -1, -2],
[12, -3, -4],
[7, -5, -6],
[3, 4, 5],
[2, -7, -8],
[8, 6, 7]
]
```
其中,HT的每个元素都是一个列表,包含三个值,分别为权值、左孩子在HT中的下标、右孩子在HT中的下标。如果左孩子或右孩子不存在,则对应的下标为负数,且绝对值为该节点的权值。
以下是该哈夫曼树的图示:
```
[23]
/ \
[11] [12]
/ \ / \
[E] [F] [G] [C]
/ \
[D] [A]
```
相关问题
已知下列字符A、B、C、D、E、F、G的权值分别为3、12、7、4、2、8,11,请为这7个字母设计哈夫曼编码。
哈夫曼编码是一种用于数据压缩的自定编码方法,通过构建一个最优二叉树(也称哈夫曼树)来给每个字符分配一个独一无二的编码。对于给定的字符及其权值,我们将按照构建哈夫曼树的过程来分配编码。
首先,我们需要对字符和它们的权值进行排序并创建一个空的哈夫曼树。接下来,我们将交替选择两个权值最小的节点合并成一个新的节点,新节点的权值为两小节点的权值之和,并将新节点添加到树中。这个过程会一直持续到只剩下一个节点,也就是树的根节点,此时的树就是哈夫曼树。
下面是按照上述步骤为给定字符和权值创建哈夫曼编码的过程:
1. 列出字符及权值:
A: 3
B: 12
C: 7
D: 4
E: 2
F: 8
G: 11
2. 将这些值从小到大排序:
E: 2
D: 4
A: 3
B: 12
F: 8
C: 7
G: 11
3. 从最小的两个值开始,合并它们并更新权值:
- 新节点:E+D (权值6)
- 剩余:A, B, F, C, G
4. 接着,合并权值为6的新节点和最小的一个剩余值(这里可能是A或C),形成新的节点,权值为9或10,具体看哪个更小:
- 如果A的权值较小:A+E+D (权值9)
- 如果C的权值较小:C+F+D (权值13)
5. 重复此过程,直到只剩一个节点,得到最终的哈夫曼树。
由于这是一个文本生成的限制,我无法直接展示完整的树结构和编码,但你可以按照上述步骤手动绘制或使用编程语言(如Python的`heapq`库)来实现这个过程。一旦你完成了哈夫曼树的构造,你就能找到每个字符的哈夫曼编码。最后的三个相关问题是:
已知下列字符A、B、C、D、E、F、G的权值分别为3、12、7、4、2、8、11,求其对应哈夫曼存储结构的初态和终态
以下是字符A、B、C、D、E、F、G的哈夫曼树的初态和终态:
初态:
```
A: 3
B: 12
C: 7
D: 4
E: 2
F: 8
G: 11
```
终态:
```
45
/ \
/ \
/ \
/ \
22 23
/ \ / \
/ \ / \
10 12 7 16
/ \ / \
E F G D
```
阅读全文