outputs = model(x) print(outputs) _, predicted = torch.max(outputs, 1) outputs = np.detch.exp(outputs) / np.sum(np.exp(outputs)) action = np.argmax(outputs) print("分类结果为:动作{}".format(action+1)) 报错RuntimeError: Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.怎么改
时间: 2024-02-13 11:02:22 浏览: 61
Add_CSS_loader_animations_to_Shiny_outputs_shinycssloaders.zip
你可以将 `outputs` 的计算过程中的 `np.exp` 和 `np.sum` 替换为 PyTorch 中的函数,然后使用 `detach()` 方法将 `outputs` 与计算结果的梯度分离,最后再转换为 NumPy 数组。修改后的代码如下:
```
outputs = model(x)
print(outputs)
_, predicted = torch.max(outputs, 1)
outputs = torch.exp(outputs) / torch.sum(torch.exp(outputs))
action = torch.argmax(outputs)
print("分类结果为:动作{}".format(action+1))
print("分类结果的概率分布为:{}".format(outputs.detach().numpy()))
```
阅读全文