python实现模糊神经网络
时间: 2023-11-05 21:59:46 浏览: 271
要实现模糊神经网络,可以使用Python中的模糊逻辑库,例如scikit-fuzzy。下面是一个简单的示例,展示了如何使用scikit-fuzzy库实现模糊神经网络:
```python
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
# 创建输入和输出变量
input_var = ctrl.Antecedent(np.arange(0, 11, 1), 'input_var')
output_var = ctrl.Consequent(np.arange(0, 11, 1), 'output_var')
# 创建模糊集和隶属函数
input_var['low'] = fuzz.trimf(input_var.universe, [0, 0, 5])
input_var['medium'] = fuzz.trimf(input_var.universe, [0, 5, 10])
input_var['high'] = fuzz.trimf(input_var.universe, [5, 10, 10])
output_var['low'] = fuzz.trimf(output_var.universe, [0, 0, 5])
output_var['medium'] = fuzz.trimf(output_var.universe, [0, 5, 10])
output_var['high'] = fuzz.trimf(output_var.universe, [5, 10, 10])
# 创建模糊规则
rule1 = ctrl.Rule(input_var['low'], output_var['low'])
rule2 = ctrl.Rule(input_var['medium'], output_var['medium'])
rule3 = ctrl.Rule(input_var['high'], output_var['high'])
# 创建控制系统
fuzzy_sys = ctrl.ControlSystem([rule1, rule2, rule3])
fuzzy_ctrl = ctrl.ControlSystemSimulation(fuzzy_sys)
# 输入模糊值
fuzzy_ctrl.input['input_var'] = 6
# 运行控制系统
fuzzy_ctrl.compute()
# 输出模糊值
output = fuzzy_ctrl.output['output_var']
print("模糊神经网络的输出:", output)
```
阅读全文