JTAG_host.c源码

时间: 2024-03-28 12:38:30 浏览: 28
以下是一个简单的JTAG主机(JTAG_host.c)的示例代码,用于通过JTAG接口与目标设备进行通信。 ```c #include <stdio.h> #include <stdint.h> #define TCK 0x01 // JTAG时钟线 #define TMS 0x02 // JTAG状态线 #define TDI 0x04 // JTAG数据输入线 #define TDO 0x08 // JTAG数据输出线 void jtag_init(void); void jtag_shift_ir(uint8_t *data, uint32_t count); void jtag_shift_dr(uint8_t *data_in, uint8_t *data_out, uint32_t count); int main(void) { uint8_t ir_data[4] = {0x3, 0x2, 0x1, 0x0}; uint8_t dr_data_in[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}; uint8_t dr_data_out[16] = {0}; jtag_init(); // 将IR移位 jtag_shift_ir(ir_data, 4); // 将DR移位 jtag_shift_dr(dr_data_in, dr_data_out, 16); return 0; } void jtag_init(void) { // 初始化JTAG接口 // ... } void jtag_shift_ir(uint8_t *data, uint32_t count) { uint32_t i; uint8_t bit; // 将TMS线拉高 // ... for (i = 0; i < count; i++) { // 将TDI线写入IR位 bit = (data[i] >> 0) & 0x01; // ... bit = (data[i] >> 1) & 0x01; // ... bit = (data[i] >> 2) & 0x01; // ... bit = (data[i] >> 3) & 0x01; // ... // 将TMS线拉低 // ... // 将TMS线拉高 // ... } // 最后一位TMS线拉高 // ... } void jtag_shift_dr(uint8_t *data_in, uint8_t *data_out, uint32_t count) { uint32_t i; uint8_t bit_in, bit_out; // 将TMS线拉高 // ... for (i = 0; i < count; i++) { // 将TDI线写入DR位并读取TDO线 bit_in = (data_in[i] >> 0) & 0x01; // ... bit_out = read_tdo(); data_out[i] |= (bit_out << 0); bit_in = (data_in[i] >> 1) & 0x01; // ... bit_out = read_tdo(); data_out[i] |= (bit_out << 1); bit_in = (data_in[i] >> 2) & 0x01; // ... bit_out = read_tdo(); data_out[i] |= (bit_out << 2); bit_in = (data_in[i] >> 3) & 0x01; // ... bit_out = read_tdo(); data_out[i] |= (bit_out << 3); // 将TMS线拉低 // ... // 将TMS线拉高 // ... } // 最后一位TMS线拉高 // ... } ``` 请注意,此示例代码仅提供了一个基本的JTAG通信框架。实际使用时,您需要根据您的目标设备和应用程序的需求进行必要的修改和扩展。

相关推荐

// 初始化vl53l0x // dev:设备I2C参数结构体 VL53L0X_Error vl53l0x_init(VL53L0X_Dev_t *dev) { GPIO_InitTypeDef GPIO_InitStructure; VL53L0X_Error Status = VL53L0X_ERROR_NONE; VL53L0X_Dev_t *pMyDevice = dev; RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); // 使能AFIO时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 先使能外设IO PORTA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // 推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // IO口速度为50MHz GPIO_Init(GPIOA, &GPIO_InitStructure); // 根据设定参数初始化GPIOA GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE); // 禁止JTAG,从而PA15可以做普通IO使用,否则PA15不能做普通IO!!! pMyDevice->I2cDevAddr = VL53L0X_Addr; // I2C地址(上电默认0x52) pMyDevice->comms_type = 1; // I2C通信模式 pMyDevice->comms_speed_khz = 400; // I2C通信速率 VL53L0X_i2c_init(); // 初始化IIC总线 VL53L0X_Xshut = 0; // 失能VL53L0X delay_ms(30); VL53L0X_Xshut = 1; // 使能VL53L0X,让传感器处于工作 delay_ms(30); vl53l0x_Addr_set(pMyDevice, 0x54); // 设置VL53L0X传感器I2C地址 if (Status != VL53L0X_ERROR_NONE) goto error; Status = VL53L0X_DataInit(pMyDevice); // 设备初始化 if (Status != VL53L0X_ERROR_NONE) goto error; delay_ms(2); Status = VL53L0X_GetDeviceInfo(pMyDevice, &vl53l0x_dev_info); // 获取设备ID信息 if (Status != VL53L0X_ERROR_NONE) goto error; AT24CXX_Read(0, (u8 *)&Vl53l0x_data, sizeof(_vl53l0x_adjust)); // 读取24c02保存的校准数据,若已校准 Vl53l0x_data.adjustok==0xAA if (Vl53l0x_data.adjustok == 0xAA) // 已校准 AjustOK = 1; else // 没校准 AjustOK = 0; error: if (Status != VL53L0X_ERROR_NONE) { print_pal_error(Status); // 打印错误信息 return Status; } return Status; }优化这段代码

最新推荐

recommend-type

sp80-pf777-4_f_sm8150_linux_android_software_user_manual.pdf

SM8150处理器还具有多种外设接口,包括USB、PCIe、UART、I2C、SPI等。 Linux和Android操作系统 Linux和Android是两种常用的操作系统,Linux是一种开源操作系统,广泛应用于服务器、嵌入式系统和移动设备上。...
recommend-type

xilinx使用JTAG打印调试信息.docx

"Xilinx 使用 JTAG 打印调试信息" Xilinx 是一家美国半导体公司,主要生产现场可编程门阵列(Field-Programmable Gate Array,FPGA)和复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。Xilinx 的 ...
recommend-type

STM32F1开发指南(精英版)-寄存器版本_V1.2.pdf

9. **JTAG/SWD调试**:JTAG(Joint Test Action Group)和SWD(Serial Wire Debug)是两种常见的嵌入式系统调试接口,SWD接口更简洁,占用的引脚少,适合资源有限的设备。 10. **LCD模块接口**:对于带有LCD显示的...
recommend-type

Jtag菊花链设计,链上芯片数量限制的原理和计算方法

JTAG(Joint Test Action Group)是一种国际标准测试协议,主要用于芯片和系统的边界扫描测试。在FPGA(Field-Programmable Gate Array)的设计中,JTAG被广泛用于配置、调试和测试。菊花链(Daisy Chain)是JTAG...
recommend-type

docker 安装教程.md

附件是docker安装教程,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。